Wednesday, May 5, 2021

ML AGGARWAL CLASS 8 Chapter 18 Mensuration Exercise 18.1

 Exercise 18.1



Question 1

 Given 

Ratio of length and breadth of rectangular field = 9.5 

Area of field = 14580$m^{2}$

Cost of fence =$₹ 3.25 / \mathrm{m}$

Let length , breadth = 9x , 5x

Area = 14580

$\begin{aligned} \ell \times b=& 14580 \\ 9 x \times 5 x &=14580 \\ 45 x^{2} &=14580 \\ x^{2} &=\frac{14580}{45} \\ x^{2} &=324 \\ x &=\sqrt{324} \end{aligned}$

$x=18 \mathrm{~m} .$

$\therefore$ length $=9 x=9 \times 18=$ 162m

breadth $=5 x=5 \times 18=90 \mathrm{~m}$

Length of fence= perimeter of rectangle section 

$=2(1+b)$

$=2(162+90)$

$=2(252)$

Length of fence = 504m

Cost of fence = $504 \times 3.25$

$=₹ 1638$


Question 2


Given 

Dimensions of rectangle = 16m$\times9m$

let side of square $=x m$.

Perimeter of rectangle = area of square

$\begin{aligned} l\times b &=x^{2} \\ 16 \times 9 &=x^{2} \\ x &=\sqrt{16 \times 9} \\ x &=4 \times 3=12 m \\ x &=12 m \end{aligned}$

$\therefore$ Side of square $=12 \mathrm{~m}$

Perimeter of square = 4x

$=4 \times 12$

$=48 \mathrm{~m}$

∴ Perimeter rectangle exceeds perimeter of square by 50 - 48 = 2m


Question 3


Given 

Length of adjacent sides = 24cm and 18cm

(diagram should be added)

Distance between longer sides = 12cm
Let ten distance between shorter sides = xcm

Area of parallelogram = Side $\times$ ten distance between the oppositer sides

$\therefore \quad 24 \times 12=18 \times x$

$x=\frac{24 \times 12}{18}$

$x=16 \mathrm{~cm}$

∴ Ten distance between shorter sides = 16cm 


Question 4


Given

(diagram should be added)

Plot dimension = $24 \mathrm{~m} \times 24 \mathrm{~m}$

House dimensions $=18 \mathrm{~m} \times 12 \mathrm{~m}$.


∴ Garden Area = plot area - house area 

= $24 \times 24-18 \times 12$

Garden Area $=360 \mathrm{~m}^{2}$

Given 
Cost of developing garden = Rs 50/$m^{2}$

∴ Total cos of developing garden around house = 360$\times 50$

=Rs 18000



Question 5


Dimension of tiles ( Parallelogram) $=18 \mathrm{~cm} \times 6 \mathrm{~cm}$ Height

Floor area = 540$m^{2}$

Area of one tile = $18 \mathrm{~m} \times \operatorname{6cm}(b \times h)$

= $108 \mathrm{~cm}^{2}$

Area of one tile = $108 \times 10^{-4} m^{2}\left(∴-1 m=10^{-2} m\right)$

No.of tiles required = $\frac{\text { ATotal Area }}{\text { Area of one tile }}$

$=\frac{540}{108 \times 10^{-4}}$

No.of tiles required = 50000



Question 6


(a) Diameter semi circle = 2.8cm

(Diagram should be added)

perimeter of semi circle $=\frac{\pi d}{2}$

$=\frac{\pi \times 2.8}{2}$

$=\frac{3.14 \times 2.8}{2}$

$=3.14 \times 1.4$

Perimeter of semi circle = 4.398cm


(b) (Diagram should be added)

Perimeter of given shape 

= $\overline{A B}+\overline{B C}+\overline{C D}+$ Semi circle perimeter

$=1.5+2.8+1.5+4.398$

= 1$10.198 \mathrm{~cm} .$


(c)  (Diagram should be added)

Perimeter of given shape 

= $\overline{O A}+$ Semi circle $A B+\overline{O B}$

$=2+4.398+2$

$=8.398 \mathrm{~cm}$

∴ Comparing three figure perimeter values , we can 
Say in case of figure ' B' and has covered more distance 


Question 7


Given

(Diagram should be added)

Area between concentric

Circle = $770 \mathrm{Cm}^{2}$

Outer circle radius = 21cm

Let inner circle radius = rcm


Outer circle area - Inner circle area = $770 \mathrm{~cm}^{2}$

$\begin{aligned} \pi(21)^{2}-\pi r^{2}=& 770 \\ \pi\left(21^{2}-r^{2}\right) &=770 \\ 21^{2}-r^{2}=& 245.098 \\ 441-r^{2} &=245.098 \\ r^{2} &=441-245.098 \\ r^{2} &=195.90 \\ r &=\sqrt{195.9} \\ r &=13.996 \approx 14 \mathrm{~cm} . \end{aligned}$

Radius of inner circle =14cm.



Question 8


Given 

Area of square = $121 \mathrm{~cm}^{2}$

$s^{2}=121$

$S=\sqrt{121}$

$S=11 \mathrm{~cm}$

∴ Side of square = 11cm

∴ Length of wire perimeter of square = $4 \times 11 \mathrm{~cm}$

$=44 \mathrm{Cm}$

Now wire is bent into a form of Circle 

∴Length of  wire= perimeter of circle 

44 =2$\pi r$      r = radius of circle 

$\pi r=\frac{44}{2}$

$\pi r=22$

$r= \frac{22}{\pi}$

$r=\frac{22}{3 \cdot 14}$

$r=7 \mathrm{~cm}$

radius of circle = 7cm

Area of circle = $\pi r^{2}$

$=3.14 \times 7^{2}$

Area of circle $=153.938 \mathrm{cm}^{2}$



Question 9


(i) (diagram should be added)

Area of $\Delta^{\text {le}}$ ABC

$=\frac{1}{2} \times b \times h$

$=\frac{1}{2} \times 3 \times 4$ (∵right angle triangle )

$=\frac{1}{2} \times 3 \times 4$

$=\frac{1}{2} \times 12$

$=6 \mathrm{cm}^{2}$


(ii) $B C^{2}=A B^{2}+A C^{2} \quad(\therefore$ Pythagorus theorem $)$

$B C^{2}=3^{v}+4^{2}$

$B C^{2}=9+16$

$B C^{2}=25$

$B C=\sqrt{25}$

$B C=5 \mathrm{cm}$


(iii) Area of triangle ABC=6$c m^{2}$

By taking $\overline{B C}$ As base

Area of triangle = $\frac{1}{2} \times b \times h$

$=\frac{1}{2} \times CB\times A D$

$6=\frac{1}{2} \times 6 \times A D$

$A D=\frac{6 \times 2}{6}$

$A D=2 \mathrm{Cm}$


Question 10


Dimension of rectangular garden = 80m$\times$40m

width  of path $(w)=2.5 \mathrm{~m}$

(i) Area of cross path = $l  \times w+b \times w-(w \times w)$

$=80 \times 2.5+40 \times 2.5-(2.5 \times 2.5)$

$293.75 \mathrm{~m}^{2}$


(ii) (diagram shuold be added) 

Area of unshaded portion 

=Area of garden - area of cross path 

= $80 \times 40-(293.75)$

=$2906.25 \mathrm{~m}^{2}$



Question 11



(diagram shuold be added) 

Area of shaded portion = Area of square ABCD - [Area of triangle ABC + Area of triangle AFD + Triangle EFC]

=$18 \times 12-\left[\frac{1}{2} \times 1 \times 18+\frac{1}{2} \times 12 \times 10+\frac{1}{2} \times 5 \times 8\right]$

=$216-[7 \times 9+6 \times 10+5 \times 4]$

=$216-[63+60+20]$

=$216-143$

=$73 \mathrm{~cm}^{2}$

∴ Area of shaded portion 73$\mathrm{cm}^{2}$


Question 12


Given 

Area of square EFGH = $729 \mathrm{~m}^{2}$

∴ side of lawn = $\sqrt{729}$

$=27 \mathrm{~m}$

Area of square ABCD = $295 \mathrm{~m}^{2}$

Side of ABCD = $\sqrt{295}$

 Side of ABCD = 17.175m

(i) ∴ Length of square filed encluding lawn and path =27m

(ii) Width of the path = side of EFGH - side of ABCD

=27  - 17.175

width of the path = 9.825m


 Exercise 18.2



Question 1


(diagram should be added)

Let ABCD is a rhombus 

$\begin{aligned} A B=B C &=C D=A D=13 \mathrm{~cm} . \\ A C &=10 \mathrm{Cm} . \end{aligned}$

'O' intersection point of diagnals 
$\overline{O A}=\overline{O C}=5 \mathrm{~cm} .$

In $\triangle^{L e}$ AOB


(i) $\overline{A B}^{2}=\overline{O A}^{2}+\overline{O B}^{2}$ (∵pythogorus theorem)

$13^{2}=5^{2}+\overline{O B}^{2}$

$169=25+\overline{O B}^{2}$

$\overline{O B}^{2}=169-25$

$\overline{O B}^{2}=144$

$\overline{O B}=\sqrt{144}$

$\overline{O B}=12 \mathrm{~cm}$

$\overline{B D}=2 \times \overline{O B}$

$=2 \times 12$

$\overline{B D}=24 \mathrm{Cm}$


(ii) Length of diagnal = 24cm

Area of rhombus =$\frac{1}{2}\times d_{1} \times d_{2}$

$=\frac{1}{2} \times 10 \times 24$

Area of rhombus $=120 \mathrm{~cm}^{2}$



Question 2


Given ABCD is a trapezium 

(diagram should be added)

Area of trapezium = $\frac{1}{2} \times $ (Sum of parllel sides) $\times $ (Distance between parllel sides)

$=\frac{1}{2} \times(1.5+8) \times 14$

Area of trapezium = 66.5$m^{2}$


Question 3


Given 

Area of a trapezium = $360 \mathrm{~m}^{2}$

distance between two paralle side = 20m

Length of one parallel side = 25m

Let unknow paralle sides = x

Area of a trepezium $=\frac{1}{2}$ (sum of parallel sides) $\times$ (distance between parallel side)

$360=\frac{1}{2}(25+x) \times 20$

$(25+x)=\frac{360 \times 2}{20}$

$25+x=36$

$x=36-25$

$x=11 m$

∴ Another parellel side length =11m



Question 4


Given 

ABCD is a rhombus 

(diagram should be added)

$\overline{B D}=13 C m$

$\overline{A B}=\overline{B C}=\overline{C D}=\overline{A D}=65 \mathrm{~cm}$

Altitude $\overline{A C}=5 \mathrm{~cm}$


(i) Area of rhombus =$\frac{1}{2} \times$ (product of diagnals)

$=\frac{1}{2} \times(13 \times 5)$

=$6.5 \times 5$

Area of rhombys = $32.5 \mathrm{~cm}^{2}$


(ii) Another diagonal $\overline{A C}=5 \mathrm{~cm} .$


Question 5


(i) (diagram should be added)

Areaof trapezium ACDE

$=\frac{1}{2}(E D+A C) \times F G$

$=\frac{1}{2}(7+13) \times 6.5$

$=\frac{1}{2} \times 20 \times 6.5$

$=65 \mathrm{~m}^{2}$


(ii) Area of parallelogram ABCE = Base $\times$ distance between parallel sides 

$=7 \times 6.5$

$=45.5 \mathrm{~m}^{2}$


(iii) The area of triangle BCD= $\frac{1}{2} \times B C \times D H$

$A C=A B+B C$

$13=7+B C$

$B C=13-7$

$B C=6 m$

$D H=G F=6.5 \mathrm{~m}$

ஃ The area of triangle BCD= $\frac{1}{2} \times 6 \times 6.5$

=$3 \times 6.5$

=$19.5 \mathrm{~m}^{2}$



Question 6


(diagram should be added)

ABCD is a rhombus and EFG is triangle 

Given 

Area of rhombus = Area of a triangle 

$\frac{1}{2} \times d_{1} \times d_{2}$ = $\frac{1}{2} \times b \times h$

$\frac{1}{2} \times 22 \times d_{1}=\frac{1}{2} \times 24.8 \times 16.5$

$\begin{aligned} 22 \times d_{1} &=24.8 \times 16.5 \\ d_{1} &=\frac{24.8 \times 16.5}{22} \\ d_{1} &=18.6 \mathrm{~cm} . \end{aligned}$

Length of diagnal = 18.6cm



Question 7


Given

Perimeter of trapezium = 52cm

(diagram should be added)

Altitude = 8cm

Length of parllel sides = perimeter - 2(parallel sides)

= 52 - 2$\times$ 10

=52- 20

Sum of parallel sides = 32cm

Area of trapezium =$\frac{1}{2} \times$ (Sum of parallel side) $\times$ Altitude

$\begin{aligned}=& \frac{1}{2} \times 32 \times 8 \\=& 32 \times 4 \end{aligned}$

Area of trapezium = $128 \mathrm{~cm}^{2}$


Question 8


Given 

area of trapezium = $540 \mathrm{Cm}^{2}$

Altitude $=18 \mathrm{Cm}$.

Ratio of length of parallel sides = 7:5

Let length of parallel sides = $7 x, 5 x$

∴ Area of trapezium = $\frac{1}{2} \times$ (Sum of parallel side) $\times$ Altitude

$540=\frac{1}{2} \times(7 x+5 x) \times 18$

$540=\frac{1}{2}(12 x) \times 18$

$540= 6 \times 18 \times x$

$x=\frac{540}{6 \times 18}$

$x=5 \mathrm{~cm}$

Length of parallel sides = $7 x=7 \times 5=35 \mathrm{~cm}$

$5 x=5 \times 5=25 \mathrm{~cm} .$



Question 9



(i) (diagram should be added)

Area enclosed by shape = Area of square AHGE + Area of triangle BCH + Area of square DCGE

$=5 \times 5+\frac{1}{2} \times 2 \times 9+4 \times 3$

$=25+9+12$

$=46 \mathrm{~cm}^{2}$


(ii) (diagram should be added) 

Area enclosed by shape = Area of square ABCD - [Area of triangle EFDH+ Area of triangle HIJ]

=$9 \times 9-\left[\frac{1}{2} \times 5 \times 7+\frac{1}{2} \times 5 \times 7\right]$

$=81-(5 \times 7) \Rightarrow 81-35=46 \mathrm{~cm}^{2}$



Question 10



(i)  (diagram should be added)

In $\Delta^{l e} A B D$

$A B^{2}+A D^{2}=D B^{2}$ (∵Pythogorus theorem)

$40^{2}+A D^{2}=41^{2}$

$A D^{2}=41^{2}-40^{2}$

$=1681-1600$

$A D^{2}=81$

$A D=\sqrt{81}$

$A D=9 \mathrm{Cm} .$



(ii) Area of trapezium = $\frac{1}{2} \times$ (Sum of parallel side) $\times$ Altitude

$=\frac{1}{2}(15+40) \times 9$

=$\frac{1}{2} \times 55 \times 9$

Area of trapezium = $247.5 \mathrm{~cm}^{2}$


(iii) Area of triangle BCD= Area of trapezium ABCD -[area of triangle ADB]

$=247.5-\left[\frac{1}{2} \times A B \times A D\right]$

$=247.5-\left[\frac{1}{2} \times 40 \times 9\right]$

$=247.5-[180]$

Areaof triangle BCD = 67.5$\mathrm{~cm}^{2}$



 

Question 11


(Diagram should be added)

 Area of section ①

Area of trapezium = $\frac{1}{2} \times$ (Sum of parallel side) $\times$ Altitude

$=\frac{1}{2} \times(28+20) \times 4$

$=96 \mathrm{~cm}^{2}$

$\therefore$ Area section (1) $=96 \mathrm{~cm}^{2}$


Ares of section ② 

(diagram should be added)

Area of trapezium = $\frac{1}{2} \times$ (Sum of parallel side) $\times$ Altitude

$=\frac{1}{2} \times(24+32) \times 4$

Ares of section ②  $=112 \mathrm{~cm}^{2}$


Section ③ Dimension are same as section ①

ஃ Area of section ③$=96 \mathrm{~cm}^{2}$


Section ④ Dimension are same as section ②

∴ Area of section ④ = 112$\mathrm{~cm}^{2}$



Question 12


(diagram should be added)

From $\Delta^{\operatorname{le}} A B D$

$B D^{2}=A B^{2}+A D^{2}$

$B D^{2}=6^{2}+88^{2}$

$B D^{2}=36+64$

$B D^{2}=100$

$B D=10 C m$


From $\Delta l e$ BDC

$B C^{2}=B D^{N}+D C^{2}$

$26^{2}=10^{2}+D C^{2}$

$676=100+D C^{2}$

$D C^{2}=676-100$

$D C^{2}=576$

$D C=\sqrt{576}$

$D C=24 \mathrm{Cm}$


Area of quadrilateral ABCD = Area of $\Delta^{l e} BAD$ + Area of $\Delta l e BDC$

$=\frac{1}{2}(A B \times A D)+\frac{1}{2}(B D \times D C)$

$=\frac{1}{2}(6 \times 8)+\frac{1}{2}(10 \times 24)$

$=\frac{1}{2}(48)+\frac{1}{2}(240)$

$=24+120$

Area of quadrilateral ABCD = $144 \mathrm{~cm}^{2}$



Question 13



(diagram should be added)

Given ABCDEFGH a regular octagon 

Area of octagon ABCDEFGH = Area of square ABCH + Area of square HCDG + Area of square GDEF

= $2 \times$ Area of square ABCH + Area of square HCDG 

$=2 \times\left(\frac{1}{2} \times(8+15) \times 6\right]+(8 \times 15)$

$=\left(2 \times \frac{1}{2} \times 23 \times 6\right)+(8 \times 15)$

$=\quad 23 \times 6+8 \times 15$

$=\quad 138+120$

$=258 \mathrm{~m}^{2} \mathrm{2}$



Question 14



(diagram should be added)

Jaspreet's diagram 

Area of ABCD = Area square  ABCF+$ Areaof square FCDE

$=2 \times($ Areaof $\square A B C F)$ (∵ Both are symmetric)

$=2 \times\left(\frac{1}{2} \times(A B+C F) \times A F\right)$

=$2 \times \frac{1}{2} \times(18+32) \times \frac{18}{2}$

= $50 \times 9$

Area of ABCDE = $450 \mathrm{~cm}^{2}$


Rahul's diagram 
-----------------------

(diagram should be added)

Area of pentagon ABCDE = area of triangle DEC + area of square ECBA 

$=\frac{1}{2}(E C \times D F)+B C \times A B$

$=\frac{1}{2} \times 18 \times 14+18 \times 18$

$=126+324$

$=450 \mathrm{~cm}^{2}$

We can find area of pentagon in this way 

(diagram should be added)

Mahesh 's diagram 


Question 15



(diagram should be added)

Area of shaded pentagon ABECD = Area of square ABCD - [Area of triangle BEC]

$=18 \times 10-\left[\frac{1}{2} \times 8 \times E B\right] \rightarrow(1)$

From triangle BEC

$B C^{2}=E C^{2}+E B^{2}$

$10^{2}=8^{2}+E B^{2}$

$E B^{2}=100-64$

$E B^{2}=36$

$E B=\sqrt{36}$

$E B=6 \mathrm{Cm}$

Sub EB value is eq ①

∴ Area of shaded pentagon ABECD = $180-\left[\frac{1}{2} \times 8 \times 6\right]$

=$180-[4 \times 6]$

=$180-24$

∴ Area of shade pentagon ABECD = $156 \mathrm{~cm}^{2}$



Question 16


(diagram should be added)

Given 

ABCDE is a polygon 

$\begin{aligned} A D &=8 \mathrm{~cm} \\ A H &=6 \mathrm{~m} \\ A G &=4 \mathrm{~cm} \\ A F &=3 \mathrm{Cm} . \\ B F &=2 \mathrm{~cm}, \mathrm{CH}=3 \mathrm{~cm}, \quad E G=2.5 \mathrm{Cm} . \end{aligned}$

Area of polygon ABCDE = area of triangle ABF + Area of square BCHF + Area of triangle CHD+ Area of triangle AGE

$=\frac{1}{2}(A F \times B F)+\frac{1}{2}(B F+C H) \times F H+\frac{1}{2}(D H \times C H)+$\frac{1}{2}(A D \times E G)$

$\begin{aligned} A D &=A H+H D \\ 8 &=6+H D \\ & H D=8-6 \\ H D &=2 C m \end{aligned}$

$A H=A F+F H$

$6=3+F H$

$F H=6-3$

$F H=3 \mathrm{Cm}$


∴ Area of polygon ABCDE = $\frac{1}{2}(3 \times 2)+\frac{1}{2}(5) \times 3+\frac{1}{2} \times 2 \times 3+\frac{1}{2}(8 \times 2.1)$

$=3+7 \cdot 5+3+10$

Area of PolygonABCDE $=23.5 \mathrm{Cm}^{2}$



Question 17


Given PQRSTU is a polygon 

(diagram should be added)

$P S=11 \mathrm{~cm}$

$P Y=9 \mathrm{~cm}$

$PX=8 \mathrm{~cm}$

$PW=5 \mathrm{~cm}$

$P V=3 \mathrm{~cm}$

$QV=5 \mathrm{~cm}$

$U w=4 \mathrm{~cm}$

$Rx=6 \mathrm{~cm}$

$T y=2 \mathrm{~cm}$

$\begin{aligned} VX&=P x-P y \\ &=8-3 \\ Vx &=5 \mathrm{~cm} \end{aligned}$

$W Y=P y-P \omega=9-5=4 \mathrm{~cm}$

$\begin{aligned} X S &=P S-P x \\ &=11-8 \\ XS &=3Cm \end{aligned}$

$\begin{aligned} Y S &=P S-P Y \\ &=11-9 \\ Y S &=2 a m \end{aligned}$

=Area of polygon PQRSTU = Area of triangle PQN + Area of square  QRXV + Area of triangle XRS + Area of triangle PUW + Area of square UMNT + Area of triangle YST

=$\left(\frac{1}{2} \times PV \times QV\right)+$ $\frac{1}{2}(Q V+R X) \times(V X)$ +$\frac{1}{2}(R X)(XS)$ + $\frac{1}{2} \times$ PW $\times$ VW +$\frac{1}{2}(V W+XT) \times(YW)$ +$\frac{1}{2}(YS) \times(Y T)$

= $\frac{1}{2} \times 3 \times 5+\frac{1}{2}(5+6) \times 5+\frac{1}{2}(6 \times 3)+\frac{1}{2}(5 \times 4)+\frac{1}{2}(4 \times 2 ) \times 4$ + $\frac{1}{2}(2 \times 2)$

= $\frac{1}{2}(15+55+18+20+24+4)$

= $\frac{1}{2}(136)$

= $68 \mathrm{~cm}^{2}$



 Exercise 18.3




Question 1


Given volume of cube $=343 \mathrm{~cm}^{3}$

Let 'S' be edge of cube 

Volume of cube = $S^{3}$

$\begin{aligned} s^{3} &=343 \\ S &=\sqrt[3]{343} \\ S &=7 \mathrm{~cm} . \end{aligned}$

ஃ Length of an edge of cube = 7cm



Question 2


 (i) Volume of Cuboid    $90 \mathrm{~cm}^{3}$    

Length 6cm   , Breadth  5cm  ,  Height  3cm


(ii) Volume of cuboid  $840 \mathrm{~cm}^{3}$ 

Length 15cm   , Breadth  15cm  ,  Height  7cm


(iii)  Volume of Cuboid   $62.5 \mathrm{~m}^{3}$ 

Length 10m   , Breadth  5m  ,  Height  1.25m



Question 3


Given 

Volume of cuboid $=312 \mathrm{~cm}^{3}$

Base $A r e a=26 \mathrm{~cm}^{2}$

volume $=312 \mathrm{~cm}^{\circ}$

Area $\times$ height $=312$

$26 \times h=312$

$h=\frac{312}{26}$

h = 12cm


Question 4


Given 

Godown  dimension $(1 \times b \times h)=$ $55 \mathrm{~m} \times 45 \mathrm{~m} \times 30 \mathrm{~m}$

Cuboidal box volume =1.2$5 m^{3}$

$\begin{aligned} \text { godown volume } &=\operatorname{l\times b} \times h \\ &=55 \times 45 \times 30 \\ &=74250 \mathrm{~m}^{3} \end{aligned}$

No. of Cuboidal boxes = $\frac{\text { godown Volume }}{\text { box volune }}$

$=\frac{74250}{1.25}$

No. of cuboidal boxes $=59400$


Question 5


Given Dimension of rectangular pit = $1.4 \mathrm{~m} \times 90 \mathrm{~cm} \times 70 \mathrm{~cm}$

Volume of pit = $l \times b \times h$

=$140 \times 90 \times 70 \mathrm{~cm}^{3}$

Volume of pit = $882000 \mathrm{~cm}^{3}$

Given 

Brick dimension (l $\times$ b) =$2.1 \mathrm{~cm} \times 10.5 \mathrm{~cm}$

Let 'h' height of brick 

$1000 \times$ Brick volume $=$ pit volume

$1000 \times$  $21 \times 10.5 \times h=882000$

$h=\frac{882000}{21 \times 10.5 \times 1000}$

$h=4 \mathrm{~cm}$

$\therefore$ Height of brick $=4 \mathrm{~cm}$



Question 6


Let 'a' be edge of cube 

Volume of cube = $a^{3}$

If each edge of cube is tripled = $a^{1}=3 a$

Volume of new Cube = $a^{1^{3}}$

$=(3 a)^{3}$

$=27 a^{3}$

The Volume becomes 27 times the original Volume of Cube.



Question 7


Given 

Milk tank is in the from of cylinder 

Diameter of tank = 1.4m $\times$ 2

Height of tank = 8m 

Volume of tank = $\frac{\pi}{} d^{2} \times h$

$\frac{\pi}{} \times(1-4)^{2} \times 8$

Volume of tank = 49 .26$0 m^{3}$

∴ Volume of tank = 49.260 lit


Question 8


Given 

Extened dimension of box = $84 \mathrm{~cm} \times 75 \mathrm{~cm} \times 64 \mathrm{~cm}$

Thickness of box = 2cm

∴ Internal Dimension of box = ($54 -2\times 2$)cm , (75 - 2 $\times$ 2) cm ,(64- 2$\times2$) cm

$=80 \mathrm{~cm} \times 71 \mathrm{~cm} \times 60 \mathrm{Cm}$


Volume of wood = External Volume - Internal Volume 

= $(84 \times 75 \times 64)-(80 \times 71 \times 60)$

$403200-340800$

 Volume of wood $=62400 \mathrm{~cm}^{3}$



Question 9


Given 

Two Cylinder jar has same volume 

Let 

$d_{1}, d_{2}$ are diameter  jar

$h_{1,} h_{2}$ are heights of jar

Given 

$d_{1}: d_{2} \cdot 3: 4$

Volume of cylinder equal

∴ $\frac{\pi}{4} d_{1}^{2} \times h_{1}=\frac{\pi}{4} d_{2}^{2} \times h_{2}$

$d_{1}^{2} \times h_{1}=d_{2}^{2} \times h_{2}$

$\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{h_{2}}{h_{1}}$

$\left(\frac{3}{4}\right)^{2}=\frac{h_{2}}{h_{1}}$

$\frac{h_{1}}{h_{2}}=\frac{16}{9}$

$h_{1}: h_{2}=16: 9$

∴ Height of cylinders are in the ratio = 16: 9


Question 10


Let   'r' be the ratio's of cylinder 

h be the height of cylinder 

Volume V = $\pi r^{2} \times h$

Now radius is  $=R^{1}=\frac{r}{2}$

Height is doubled = $h^{1}=2 h$

New Volume $V^{1}=\pi r_{1}^{2} \times h^{1}$

$=\pi\left(\frac{r}{2}\right)^{2} \times(2 h)$

$=\frac{\pi r^{2}}{4} \times 2 h$

$v^{1}=\frac{\pi r^{2} \times h}{2}$

$v^{1}=\frac{v}{2}$

ஃ New Volume is half of original Volume 


Question 11


Dimensions of tin sheet $=30 \mathrm{~cm} \times 18 \mathrm{~cm}$

When rolled along its length (30cm)
-----------------------------------------------

$\begin{aligned} 2 \pi r &=30, \quad h=18 C m \\ r &=\frac{30}{2 \pi} \\ r &=4.77 \mathrm{~cm} \end{aligned}$

$\begin{aligned} \text { Volume } &=\pi r^{2} \times h \\ &=\pi \times 4.77^{2} \times 18 \\ \text { Volume } &=1289.155 \mathrm{~cm} 3 \end{aligned}$


When rolled along breadth (18cm)
----------------------------------------------

$2 \pi r=18, \quad h=30 \mathrm{~lm}$

$r=\frac{18}{2 \pi}$

$r= 2.86 \mathrm{~cm}$

$\begin{aligned} \text { Volume } &=\pi r^{2} \times h \\ &=\pi \times 2.86^{2} \times 30 \\ &=773.493 \mathrm{~cm} 3 \end{aligned}$



Question 12


(i) Given dis of pipe = 7cm = 0.07m

Velocity = 5m\sec

Discharge = Area $\times$ Velocity 

$=\frac{\pi d^{2}}{4} \times V$

$=\frac{\pi \times(0.07)^{2}}{4} \times 5$

Discharge $=0.0192 \mathrm{~m}^{3} / \mathrm{sec}$

$\begin{aligned} \therefore \text { Discharge } &=19.2 \text { lits } / \text { see } \\ &=19.2 \times 60 \text { lits } / \mathrm{min} \end{aligned}$

Discharge = 1154 .53 lits\min

Discharge $\approx 1155 \operatorname{lit} / \min$


(ii) Dimension of tank = $4 m \times 3 m \times 2.31 m$

Discharge $=0.0192$ $m^{3}/sec$

$1.154 \mathrm{~m}^{3} / \mathrm{min}$

Timetaken to fill the tank $=\frac{\text { Volume of tank }}{\text { Discharge }}$

$=\frac{4 \times 3 \times 2.31}{1.154}$

Time taken to fill the tank = 24min




Question 13


Given 

Vessel 1 

radius 15cm 

Height 40cm 

Volume $\pi x r^{2} \times h$

$\pi \times(15)^{2}+40$

Volume $\quad 28274.33 \mathrm{~cm}^{3}$


Vessel 2

Radius  20cm

Height  40cm

Volume  $\pi x r^{2} \times h$ 

$\pi \times(20)^{2}+45$

Volume  $56548.667 \mathrm{~cm}^{3}$

Given 

Another vessel with capcity equal to sum of vessel 1 and vessel 2

Let radius of vessel's = R

Height of vessel = 30cm

$\left(\pi R^{2}\right) \times 30=28274.33+56548.667$

$\begin{aligned} 30 \times\left(11 R^{2}\right) &=84823 \\ R^{2} &=\frac{84823}{\pi \times 30} \end{aligned}$

$R^{2}=900$

$R=\sqrt{900}$

$R=30 \mathrm{Cm}$

∴ Radius of vessel = 30cm


Question 14


Given 

Pole height = 7m

Pole diameter = 20cm = 0.2m

Density = $225 \mathrm{~kg} / \mathrm{m}^{3}$

Volume of wood = $\frac{\pi d^{2}}{4} \times h$

$=\frac{\pi}{4} \frac{(20)^{2}}{10^{4}} \times 7$

Volume of wood $=0.219 \mathrm{~m}^{3}$

Weight of wood = 49.48kg 



Question 15


(diagram should be added)

A cylinder with diameter of 14cm and height of 30cm is the maximum Volume 

That can be cut from given Cuboid 

Volume of cylinder = $\frac{\pi}{4} d^{2} \times h$

$=\frac{\pi}{4}(14)^{2} \times 30$

Volume of cylinder = 4618.14 $\mathrm{cm}^{3}$

Volume of wood wasted = Volume of cuboid - Volume of cylinder 

= $14 \times 14 \times 30-(4618.14)$

Volume of Wood wasted = $1261.85 \mathrm{~cm}^{3}$


 Exercise 18.4


Question 1


Given surface area = $384 \mathrm{cm}^{2}$

(i) Let length of side of cube = a 

Surface area of cube = $6 a^{2}$

$6 a^{2}=384$

$a^{2}=\frac{384}{6}$

$a^{2}=64$

$a=\sqrt{64}$

$a=8 \mathrm{~cm}$

∴ Length of edge = 8cm


(ii) Volume of the cube 

Volume of the cube = $a^{3}$

$=8^{3}$

Volume of the cube $=512 \mathrm{~cm}^{3}$




Question 2


Given 

Radius of Cylinder = 5cm

Height of Cylinder = 10cm

Surface area of Cylinder =$2 \pi r h$

$=2 \pi \times 5 \times 10$

 Surface area of Cylinder $=100 \pi$




Question 3


Given 

Aquarium Dimensions = $70C m \times 28 \mathrm{~cm} \times 35 \mathrm{~cm}$

To cover Base , Side and back faces Total area of 

Paper needed = $2(l b+b h+lh)$

=$2(70 \times 28+28 \times 35 \times 10 \times 35)$

=$2(5390)$

=$10780 \mathrm{~cm}^{2}$



Question 4


Given 

Internal dimension of hall = $15 \mathrm{~m} \times 12 \mathrm{~m} \times 4 \mathrm{~m}$

Area of four walls = $l h+b h+l h+lh$

$=2(l h+ b h)$

$=2(15 \times 4+12 \times 4)$

$=2(60+48)$

$=2 \times 108$

Area of four walls = $216 \mathrm{m}^{2}$


Given 

4 Windows of dimension = $2 m \times 1.5 m$

2 doors of dimension = $1.5 \times 2.5 \mathrm{~m}^{2}$

∴ Remaining walls area = Area of four walls - [4 $\times$ Area of window + 2 $\times$ area of door]

$=216-[4 \times 2 \times 1.5+2 \times 1.5 \times 2.5]$

$=216-[12+7.5]$

$=216=19-5$

∴Remaining walls area $=196.5 \mathrm{~m}^{2}$


Given

Cost for white washing walls = Rs $5 / m^{2}$

Total Cost of white washing walls = $5 \times 196.5$

$=Rs 982.5$

Area of Ceiling = lb = 15 $\times$ 12

= $180 \mathrm{~m}^{2}$

Total area = Area of walls +  Area of ceiling 

= 196.5 + 180

Total Area = $376.5 \mathrm{~m}^{2}$

Total Cost of white washing walls including ceiling 

$=5 \times 376.5$

$=Rs 1882.5$



Question 5


Swimming Pool length = 50m

 Breadth = 30m

Height = 2.5m

Area of walls and base = lb +lh + bh+ lh+bh

$=2(1 h+b h)+l b$

$=2(50 \times 2.5+30 \times 2.5)+50 \times 30$

$=400+1500$

Area of walls and base $=1900 \mathrm{~m}^{2}$

Given Cementing rate = Rs 27/$m^{2}$

∴ Total cost for cementing = $27 \times 1900$

=Rs 51300



Question 6


Given rectangular hall perimeter = 236m

Hall height = 4.5m

Surface area of walls = $2 h(l+b)$

$4 \cdot 5 \times 236$

Surface area of walls = 1062$m^{2}$

Painting walls cost = Rs $8.4 / m^{2}$

Total Cost of painting = $8.4 \times 1062$

Total Cost of painting= Rs 8920.8



Question 7


Dimension of fish tank= $300 \mathrm{~m} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$

Given Only $\frac{3}{4}$ th of tank contain water 
 
∴ Volume of water = $30 \mathrm{~m} \times 20 \mathrm{~m} \times 20 \times \frac{3}{4} \mathrm{Cm}$

Volume of water $=30 \mathrm{~cm} \times 20 \mathrm{~cm} \times 15 \mathrm{Cm}$

Area of tank in contact with water = walls area up to water level + base area 

$=2 h(l+b)+l b$

$=2(30+20) \times 15+30 \times 20$

$=1500+600$

Area of tank in contact with water $=2100 \mathrm{~cm}^{2}$


Question 8


Given 

Volume of cuboid = $448 \mathrm{~cm}^{3}$

Let side of square = a cm

Height = 7cm

$\begin{aligned} a^{2} \times 7 &=448 \\ a^{2} &=\frac{448}{7} \\ a^{\nu} &=64 \\ a &=\sqrt{64} \\ & a=8 \mathrm{~cm} \end{aligned}$

Side of square base = 8cm



(ii) Surface area cuboid = $2\left(a^{2}+2 a h\right)$

$=2\left(8^{2}+2 \times 8 \times 7\right)$

$=2(176)$

Surface of area of Cuboid = $352 \mathrm{~cm}^{2}$



Question 9


Given 

Total surface area of rectangle solid = $1216 \mathrm{~cm}^{3}$

Ratio of length, breadth and height = 5:4:2

Let length , breadth and height = 5x, 4x , 2x

Total surface area = 1216

$2(l b+b h+h l)=1216$

$2(5 x \times 4 x+4 x \times 2 x+2 x \times 5 x)=1216$

$2\left(20 x^{2}+8 x^{2}+10 x^{2}\right)=1216$

$2 \times 38 x^{2}=1216$

$\begin{aligned} 76 x^{2} &=1216 \\ x^{2} &=\frac{1216}{76} \\ x^{2} &=16 \\ x &=\sqrt{16} \\ x &=4 \mathrm{~cm} \end{aligned}$

∴ Length 5x = $5 \times 4=20 \mathrm{~cm}$

breadth 4x = $4 \times 4=16 \mathrm{~cm}$

Height 2x = $2 \times 4=8 \mathrm{~cm}$

Volume of rectangular solid = $l \times b \times h$

$=20 \times 16 \times 8$

Volume of rectangular Solid = $2560 \mathrm{~cm}^{3}$



Question 10


Dimension of room = $6 \times 5 \times 3.5 \mathrm{~m}^{3}$

Dimension of window = $1.5 \mathrm{~m} \times 1.4 \mathrm{~m}$

Dimension of door = $1.1 \mathrm{~m} \times 2 \mathrm{~m}$

Area of walls = $2 h(1+h)-[3 \times 1.5 \times 1.4+2 \times 1.1 \times 2]$

$=2 \times 3.5(6+5)-[6.3+4.4]$

$=77-10.7$

Area of walls = $66.3 \mathrm{~m}^{2}$

Area of ceiling = lb = $6 \times 5=30 \mathrm{~m}^{2}$


Total area = $66.3+30=96.3 \mathrm{~m}^{2}$

Cost of white washing = Rs $5.3 / \mathrm{m}^{2}$

Total Cost = area $\times$ cost /$m^{2}$

$=96.3 \times 5.3$

Total cost $=₹ 510.39$



Question 11


Given 

Dimension of Cuboidal block = $36 \mathrm{~cm} \times 32 \mathrm{~cm} \times 0.25 \mathrm{Cm} .$

(i) Volume of Cuboidal block =
 $\begin{aligned} & 36 \times 32 \times 25 \\=& 28800 \mathrm{~cm}^{3} \end{aligned}$

Cube of edge = 4cm

Volume of Cube = $4^{3}$

$=64 \mathrm{~cm}^{3}$

No. of Cubes = $\frac{\text { Volume of Cuboidal block }}{\text { volume of cube }}$

=$\frac{28800}{64}$

No. of Cubes = 450

∴ From given Cuboid 450 Cubes of edge 4cm Can be costed.


(ii) Cost silver coating = Rs 0.75/$m^{2}$

Surface area of cube = $6 a^{2}$

$=6 \times 4^{2}$

$=6 \times 16$

Surface Area of cube= $96 \mathrm{~cm}^{2}$

Total surface area of cubes = $450 \times 96$
thrm{~cm}^{2}$
$=43200 \mathrm{~cm}^{2}$

Total Surface Area of Cubes = 4.32 $m^{2}$

Cost of silver coating fall cubes = $4.32 \times 0.75 \times 10^{4}$

$=Rs32400$

∴ Total Cost for Silver coating of Cubes is Rs 32400



Question 12


Givew three cubes of edge lengths $=3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$

New cube edge length $=a \mathrm{~cm}$

$a^{3}=3^{3}+4^{3}+5^{3} .$

$a^{3}=216$

$a=(216)^{1 / 3}$

A surface area of cube = $6 a^{2}$

$=6 \times 6^{2}$

Surface area of cube $=216 \mathrm{~cm}^{2}$

Cost of gold coating = Rs 3.5 / $\operatorname{Cm}^{2}$

Total Cost of gold coating of cube
 
= area $\times$ cost /$\mathrm{Cm}^{2}$

$=216 \times 3.5$

$=Rs 756$

∴ Total Cost of gold coating of cube = Rs 756


Question 13


Given

Surface area of cylinder = $4375 \mathrm{~cm}^{2}$

Rectangular sheet width = 35cm

perimeter of circle = 35 cm

$\begin{aligned} 2 \pi r &=35 \\ r &=\frac{35}{2 \pi} \end{aligned}$

radius of base $(r)=5.57 \mathrm{~cm}$

Surface area= $2 \pi r h=4375$

$\begin{array}{rl}=211 \times \pi \mathrm{hh} & 24375 \\ =35 \times h & =4375 \\ h =  \frac{4375}{35}\end{array}$

h = $125 \mathrm{~cm}$

Height of cylinder = 125cm

∴ Lenght of sheet = 125 cm

Perimeter of sheet= $\begin{aligned} & 2(l+W) \\=& 2(125+35) \Rightarrow 2(160) \\=& 320 \mathrm{~cm} \end{aligned}$


Question 14


Road roller diameter = 0.7m

Road roller width = 1.2m

Play ground size = $120 \mathrm{~m} \times 44 \mathrm{~m}$

Area of ground = 5280$m ^2$


Surface area of roller =$\pi d W$

$=\pi \times 0.7 \times 1.2$

Surface area of roller = 2.538$m^{2}$

No. of revolutions to cover ground = $\frac{\text { Area of ground }}{\text { surface area of roller }}$

$=\frac{5280}{2.638}$

= $2000 \cdot 8 \approx$ 2000

∴ No , minimum no. of revolutions to cover ground is 200D


 

Question 15


Given 

Diameter of cylindrical container= 14cm

Height of cylindrical container= 20cm

Label Height = 20 - (2+2)

= 16cm

∴ Area of label = surface area of cylinder of height 16cm

$=\pi d h$

$=\pi \times 14 \times 16$

=$\frac{22}{7} \times 14 \times 16$

∴ Area of label = $=704 \mathrm{~cm}^{2}$


Question 16


Given 

Sum of radius and height of cylinder = 37cm

r+h= 37---1

Total surface area = 1628$\mathrm{cm}^{2}$

$\begin{aligned} 2 \pi r h &=1628 \\ r h &=\frac{1628}{2 \times 14} \\ r h &=\frac{1628 \times 7}{2 \times 22} \\ r h &=259 \end{aligned}$

$(37-h) h=25 q$

$37 h-h^{2}=259$

$h^{2}-37 h+259=0$

$h_{1}=27.63$

$r_{1}=37-27.63$

$r_{1}=9.37 \mathrm{~cm}$

Volume of Cylinder 

$=\pi r_{1}^{2} h_{1}$

$=11 \times 9.37^{2} \times 27.63$

$v_{1}$ $=7620.96 \mathrm{~cm}^{3}$

$h_{2} =9.37$

$r_{2}=37-9.37$

$r_{2}=27.63 \mathrm{~cm}$

Volume of cylinder 

$=\pi r_{2}^{2} h_{2}$

$=\pi \times27.63^{2} \times 9.32$

$V_{2}=22472.5 \mathrm{~cm}^{3}$


Question 17


Given 

Ratio between surface area and total surface area = 1:2

Total surface area = $616 \mathrm{~cm}^{2}$

$2 \pi r h: 2 \pi r(h+r)=1: 2$

$\frac{h}{h+r}=\frac{1}{2}$

$2 h=h+r$

h=r

∴ Height = radius 

Total surface area = $616 \mathrm{~cm}^{2}$

$2 \pi r(h+r)=616 \mathrm{~cm}^{2}$

$2 \pi r(r+r)=616 \mathrm{~cm}^{2}$

$2\left(2 \pi r^{2}\right)=616 c m^{2}$

$2 \pi r^{2}=308 c m ^{2}$

$r^{2}=\frac{308}{2 \pi}$

$r^{2}=49$

$r= \sqrt{49}$

$r=7 \mathrm{~cm}$

$r=h=7 \mathrm{~cm}$

Volume of Cylinder = $\pi r^{2} h$

$=\pi(7)^{2} \times 7$

Volume of cylinder = $1077.56 \mathrm{~cm}^{3}$



Question 18


Length of Cylinder = $77 \mathrm{~cm}=\mathrm{h}$

Inner diameter $d_{1}=4 c m$

Outer diameter $\left(d_{2}\right)=4.4 \mathrm{~cm}$

(i)Inner curved Surface area 

$=\pi d_{1} h$

$=\pi \times 4 \times 77$

$=967.61 \mathrm{~cm}^{2}$


(ii) Outer curved surface area 

$=\pi d_{2} h$

$=\pi \times 4.4 \times 17$

$=1064.37 \mathrm{~cm}^{2}$


(iii) Total surface area

=$\pi d _{1} h+\pi d_{2} h+2 \times \pi\left(r_{2}^{2}-r_{1}^{2}\right)$

=$967.63+1064.37+2 \pi\left(2.2^{2}-2^{2}\right)$

$=967+1064.32+5.27$

$=2038.08 \mathrm{~cm}^{2}$



















































































0 comments:

Post a Comment