Monday, May 17, 2021

ML AGGARWAL CLASS 7 Chapter 6 Ratio and Proportion EXERCISE: 6.1

 EXERCISE: 6.1


Question 1

i) Given ratio

$\begin{aligned}=\frac{1}{6}: \frac{1}{9}=\frac{1 / 6}{1 / 9} &=\frac{1}{6} \times 9 \\ &=\frac{3}{2} \\ &=2.2 \end{aligned}$ 

ii) Given ratio $=4 \frac{1}{2}: 1 \frac{1}{8}$

$\begin{aligned}=\frac{9}{2}: \frac{9}{8} &=\frac{9 / 2}{9 / 8} \\ &=\frac{9}{2} \times \frac{8}{9} \\ &=4: 1 \end{aligned}$

iii) $\frac{1}{5}: \frac{1}{10}: \frac{1}{15}$

Lcm of $5,10,15$ is 30

$=\frac{1}{5} \times 30: \frac{1}{10} \times 30: \frac{1}{15} \times 30$

$=6: 3: 2$


Question 2

i) Rs 5 to 50 paise 

$=\frac{5 \times 100 \text { paise }}{50 \text { paise}}$

$=\frac{50}{5}=10: 1$


ii)$3 \mathrm{~km}$ to $300 \mathrm{~m}$

$=\frac{3 \times 1000 \mathrm{~m}}{300}$

$=\frac{3000}{300}$

$=10: 1$

iii)
 $\begin{aligned} 9 m & \text { to } 27 \mathrm{~cm} \\ &=\frac{9 \times 100 \mathrm{~cm}}{27} \\ &=\frac{900}{27} \\ &=100: 3 \end{aligned}$

iv) 
$\begin{array}{rl}15 & \mathrm{~kg} \text { to } 210 \mathrm{~g} \\ = & \frac{15 \times 1000 \mathrm{~g}}{210} \\ = & \frac{15000}{210} \\ & =500: 7\end{array}$

V) 25 minutes to $1.5$ hour

$=\frac{25 \text { minutes }}{1.5 \times 60 \text { minutes }}$

$25 / 90$ = $5: 18 .$

vi) 30 days to 36 hours 

$=\frac{30\times 24}{36 \mathrm{~hours}}$

=20: 1

Question 3

$A: B=3: 4 \quad ; B: C=8: 9$

$\frac{A}{B}=\frac{3}{4} ; \frac{B}{c}=\frac{8}{9}$

Now $\frac{A}{C}=\frac{A}{B} \times \frac{B}{C}=\frac{3}{4} \times \frac{8}{9}$◘

A: C=2: 3

Question 4

$A: B=5: 8$, Value of $B=8$

$B: C=18: 25$, value of $B=18$

LCM of these two value of B i.e 8 and 18 is 72

Thus , 

$A: B=5: 8=\frac{5}{8}=\frac{5 \times 9}{8 \times 9}=\frac{45}{72}=45: 72$ and

$B: C=18: 25=\frac{18}{25}=\frac{18 \times 4}{25 \times 4}=\frac{72}{100}=72: 100$

$A: B: C=45: 72: 100$


Question 5

Let 

$3 A=2 B=5 c=k$ (Say), then

$A=\frac{k}{3}, B=\frac{k}{2}, c=\frac{k}{5} .$

$\begin{aligned} \therefore A: B: C=& \frac{K}{3}: \frac{K}{2}: \frac{k}{5} \\ &=\frac{1}{3}: \frac{1}{2}: \frac{1}{5} \end{aligned}$

Lcm of $3,2,5$ is 30

$=\frac{1}{3} \times 30: \frac{1}{2} \times 30: \frac{1}{5} \times 30$

Hence , A:B:C= 10:15:6

Question 6

Given Income =Rs 120

Spendings = Rs 90

Savings = Income -spendings

=120-90

= 30 

i) $\frac{\text { Spending }}{\text { Income }}$ = $\frac{90}{120}=\frac{9}{12}=3: 4$

ii) $\frac{\text { Savings }}{\text { Income }}$ = $\frac{30}{120}=\frac{1}{4}=1: 4$

iii) $\frac{\text { Savings }}{\text { Spendings }}=\frac{30}{90}=\frac{1}{3}=1: 3$.

Question 7

An alloy contains = 5 grams 

and of which copper was = $3 \frac{3}{4} \mathrm{grams}$

=$\frac{15}{4}$ grams

Now nickel contains = $5-\frac{15}{4}$

=$\frac{20-15}{4}$

=$\frac{5}{4}$

Question 8

Let the two pieces will be $x, \frac{x}{2}$

Total height of pole. $=3$ metres

i.e $x+\frac{x}{2}=3$

$\frac{2 x+1}{2}=3$

$\frac{3 x}{2}=3$

$x=\frac{3 \times 2}{3}$

$x=2, \frac{x}{2}=\frac{2}{2}=1$

∴ Length of two pieces are 2, 1 metres

Question 9

Given height of Anshul and Dhruv are 1.04 m and 78cm

Ratio of their height = $\frac{\text { Height of Anshul }}{\text { Height of Dhruv }}$

$=\frac{1.04 \mathrm{~m}}{78 \mathrm{~cm}}$

=$\begin{aligned} & \frac{1.04 \times 100}{78} \\=& \frac{104}{78} \\=& 4: 3 \end{aligned}$ $(\because 1 m=100 \mathrm{~cm})$

Question 10

Total money to be shared = Rs 180

Ratio of these children = $\frac{1}{3}: \frac{1}{4}: \frac{1}{6}$

LCM of 3, 4 and 6 is 12

$=\frac{1}{3} \times 12: \frac{1}{4} \times 12: \frac{1}{6} \times 12$

$=4: 3: 2$

Total sum of ratio = 4+3+2= 9

1st children share = $\frac{4}{9} \times 180=4 \times 20=\varepsilon 80 .$

2nd children share = $=\frac{3}{9} \times 180=3 \times 20=₹ 60$

3rd children share = $\frac{2}{9} \times 180=2 \times 20$=Rs 40

Question 11

Let the two part be 7x, 11x

Given difference of two parts = 20

i.e $11 x-7 x=20$

$4 x=20$

$x=\frac{20}{4}$

$x=5$

$\therefore 7x=7 \times 5=35 \quad ; 11 x=11 \times 5.55$

Sum of two numbers = 35+55= 90

Question 12

Let the total amount be Rs x

The amount has been divided in two parts in the ratio 9:13

Sum of ratios = 9+ 13= 22

According to given condition $\frac{13}{22}$ of Rs x=260

$\Rightarrow \frac{13}{22} \times x=260 \Rightarrow x=\frac{260 \times 22}{13}$

x = Rs 440

Hence, the total amount = Rs 440

Question 13

As the present ages of anjali and ashu are in the ratio 2:3 

Let their present ages be 2x, years and 3x years resp

After 5 years , 

The age of anjali will be (2x+ 5) years and the age of ashu will be (3x+ 5) years

According to given information , $\frac{2 x+5}{3 x+5}=\frac{3}{4}$

$3(3 x+5)=4(2 x+5)$

$9 x+15=8 x+20$

$9 x-8 x=20-15$

$x=5$

Hence, the presentage of anjali = $2\times 5$ = 10 years 

and the present age of ashu = $3\times 5$0 = 15 years 

Question 14

Let their present ages of A and B be 5x years and 6x years resp

Three years ago , 

The age of A will be (5x- 3) and the age of  B will be (6x- 3) years

According to given information, $\frac{5 x-3}{6 x-3}=\frac{4}{5}$

$5(5 x-3)=4(6 x-3)$

$25 x-15=24 x-12$

$25 x-24 x=15-12$

$x=3$

Hence, the present age of A = $5\times 3$= 15 years and the present age of B = $6\times 3$ = 18 years

Question 15

Let the numbers be 5 x, 6 x

2 is added to first =5 x+2

3 is added to second =6 x+3

Their ratio, $\frac{5 x+2}{6 x+3}=\frac{4}{5}$

$5(5 x+2)=4(6 x+3)$

$25 x+10=24 x+12$

$25 x-24 x=12-10$

$\begin{aligned} x=2 \Rightarrow 5 x &=5 \times 2=10 \\ 6 x &=6 x^{2}=12 \end{aligned}$

∴ The numbers are 10, 12

Question 16

Let the number of boys and girls be 7x, 6x

Total no. of students = 1430 

$7 x+6 x=1430$

$13 x=1430$

$x=\frac{1430}{13}$

$x=110$

∴ Number of boys = 7x = 7$\times 110$=770

Number of girls = 6x = $6 \times 110$ = 660

As , given 26 girls are admitted 

i.e 660+ 26 = 686

Let the new boys are admitted be x 

Ratio of number of boys to girls = 8:7

i.e $\frac{x+770}{686}=\frac{8}{7} .$

$x+770=\frac{8}{7} \times 686$

$x+770=784$

$x=784-7.70$

$x=14$ new boys are admitted.

Question 17

i) $5: 6$ or $6: 7$

$\frac{5}{6} ; \frac{6}{7}$

LCM of 6,7 is 42

i.e $\frac{5}{6} \times \frac{7}{7}=\frac{35}{42} ; \frac{6}{7} \times \frac{6}{6}=\frac{36}{42}$

As $36>35$, so $6: 7$ is greater than $5: 6$.


ii) $13: 24$ (or) $17: 32$

$\frac{13}{24}$ (or) $\frac{17}{32}$

$\mathrm{L} \mathrm{CM}$ of 24,32 is 96

i.e $\frac{13}{24} \times \frac{4}{4}=\frac{52}{96} ; \frac{17}{32} \times \frac{3}{3}=\frac{51}{96}$

As $52>51$, So $13: 24$ is greater than 17:32.

 EXERCISE: 6.2


Question 1

i)
 $\begin{aligned} 2.5: 1.5 &=\frac{2.5}{1.5} \times \frac{10}{10} \\ &=\frac{25}{15}=\frac{5}{3} . \end{aligned}$

$\begin{aligned} 7.0: 4 \cdot 2 &=\frac{7.0}{4.2} \times \frac{10}{10} \\ &=\frac{70}{42}=\frac{5}{3} . \end{aligned}$

$\frac{2.5}{1.5}:: \frac{7.0}{4 \cdot 2}=\frac{5}{4}:: \frac{5}{3}$ , True


ii) $\frac{1}{2}: \frac{1}{3}$

 LCM of 2,3 is 6

$\frac{1}{2} \times 6: \frac{1}{3} \times 6=3: 2$


$\frac{1}{3}: \frac{1}{4}$

LCm of 3,4 is 12

$\frac{1}{3} \times 12: \frac{1}{4} \times 12=4: 3$


$3: 2 \neq 4: 3$, False.

 
iii) 24 men: $16 \mathrm{men}$ ; 33 horses: 22 horses

$=\frac{24}{16}$ ; $=\frac{33}{22}$               

$=\frac{3}{2}$ ; $=\frac{3}{2}$

$\frac{3}{2}=\frac{3}{2}$, True.

Question 2

i) Product of extremes = $18 \times 5=90$

Product of means = $9 \times 10=90 .$

By cross product rule, the number 18, 10,9, 5 are in proportion 

ii) $3 \frac{1}{2}=3+\frac{1}{2}=\frac{6+1}{2}=\frac{3}{2}$.

$4 \frac{1}{2}=4+\frac{1}{2}=\frac{8+1}{2}-\frac{9}{2}$

product of extremes $=3 \times \frac{9}{2}=\frac{27}{2}$.

product of means $=4 \times \frac{7}{2}=\frac{28}{2}$.

∴ The number are not in proportion 

Question 3

i) 
$\begin{aligned} \frac{x}{4}=\frac{9}{12} \\ \text { Cross product } \\ 12 \times x &=9 \times 4 \\ x=\frac{9 \times 4}{12}=\frac{36}{12} \\ x=3 \end{aligned}$


ii) $\frac{1}{13}: x:: \frac{1}{2}: \frac{1}{5}$

$\Rightarrow \frac{1}{13}: x=\frac{1}{2}: \frac{1}{5}$'

$\frac{1 / 13}{x}=\frac{1 / 2}{1 / 5}$

$\frac{1}{13 \times x}=\frac{1}{2} \times 5$

$\frac{1}{13 x} \cdot \frac{5}{2} .$

Cross multiplication.

$2 \times 1=13 \times 55$

$65 x=2$

$x=2 / 65$

iii) $3.6: 0.4=x: 0.5$

$\frac{3.6}{0.4}=\frac{x}{0.5}$

$\frac{3.6 \times 10}{0.4 \times 10}=\frac{x \times 10}{0.5 \times 10}$

$\frac{36}{4}=\frac{10 x}{5}$

$9=\frac{10 x}{5}$

$10 x=9 \times 5$

$x=\frac{9 \times 5}{10}=\frac{45}{10}$

$x=4.5$

Question 4

If a,b,c and  are in proportion then ad= bc

d is the first proportion 

i)
 $\begin{aligned} a=42 ; b=12: c=7 ; d=? \\ 42 \times d=& 12 \times 7 \\ 42 d=84 \\ d=\frac{8 y}{42} \end{aligned}$

$d=2$ is fourth propotion.


ii) $a=\frac{1}{3}, b=\frac{1}{4}, \quad c-\frac{1}{5}, d=7$

$\frac{1}{3} \times d=\frac{1}{4} \times \frac{1}{5}$

$\frac{d}{3}=\frac{1}{20}$

$d=\frac{3}{20}$. is fourth propotion


iii) $\begin{aligned} a=3, b=12, & c=15, d=? \\ 3 \times  d &=12 \times 15 \\ d &=\frac{12 \times +5^{5}}{8} \\ d &=12 \times 5 \\ d &=60 \text { is fourth proportion. } \end{aligned}$

Question 5

Continued proportion 

If a,b,c are said to be in continued proportion 

If a:b= b: c i.e $b^{2}=a c$

$a=3, b=49, c=343$

$b^{2}=49^{2}=2401$

$a c=7 \times 343=2401$

$\therefore b^{2}=a c$

∴ They are said to be in continued proportion

Question 6

As we know $b^{2}=a c$  if $a, b, c$ are in proportim

Third proportion $C=\frac{b^{2}}{a}$.

i) $a=36: b=18, c=?$

$C=\frac{18^{2}}{36}$

$C \cdot \frac{18 \times 18}{36}$

$C=9$ is third propdtion


ii)  $a=5 \frac{1}{4}=\frac{21}{4} ; b=7 ; c=?$

$c=\frac{7^{2}}{(21 / 4)}$

$c=\frac{49 \times 4}{21}$

$C=\frac{28}{3}$ is third proportion 


iii) $a=3 \cdot 2=\frac{32}{10}=\frac{16}{5}, \quad b=0.8=\frac{8}{10}=\frac{4}{5} .$

$\begin{aligned} c &=\frac{(4 / 5)^{2}}{16 / 5)} \\ &=\frac{16}{25} \times \frac{5}{16} \end{aligned}$

$C=\frac{1}{5}$ is third proportion 

Question 7

Given Ratio of length to width is $7: 5$

Width of sheet $=20.5 \mathrm{~cm}$

Length of sheef $=?

$\frac{\text { Lenght }}{\text { width }}=\frac{7}{5}$

$\frac{\text { height }}{20.5}=\frac{7}{5}$

Length $=\frac{7}{5} \times 20.1$

Length $=28.7 \mathrm{~cm}$

Question 8

Amit age is 4 years  months 

i.e ($4+\frac{8}{12}$) years

$=4 \frac{2}{3}$ years $=\frac{14}{3}$ years

Ages of amit and archana are in ratio 4: 5

i.e $\frac{\text { Amit }}{\text { Archans }}=\frac{4}{5}$

$\frac{14 / 3}{\text { Archana }}=\frac{4}{5}$

Archana age = $\frac{14}{3} \times \frac{5}{4}=\frac{35}{6}$ years

∴Archana's age is 5 years 10 months 

Since $\frac{35}{6} \times \frac{2}{2}=\frac{70}{12}$

(daigram to be added)

$\frac{7_{0}}{12}=5 \frac{10}{12}$ years

i.e 5 years 10 months.

∴ Archana's age is 5 years 10 months 


 EXERCISE: 6.3


Question 1

 Cost of 6 bowls = Rs 90 

Then Cost of 10 Such bowls = ? 

Let cost of 10 bowls = Rs x

1.e $\begin{aligned} \frac{x}{90} &=\frac{10}{6} \\ x &=\frac{10 \times 90}{ 6} \\ x &=₹ 150 \end{aligned}$

∴ Cost of 10 Such bowls = Rs 150

Question 2

With the cost of Rs 15 ,we bought = 10 pencils 

Then with the cost of Rs 72 ,we bought =? Pencils 

Let it be = x pencils 

i.e $\frac{x}{10}=\frac{72}{15}$

$x=\frac{32 \times 10}{15}$

$x=\frac{720}{15}$

$x=48$ pencils

Question 3

Given 400 grams Cake costs Rs 80 

Then 1.5 kg  Cake Cost = ?

Let the cost be Rs x 

i.e
 $\begin{aligned} \frac{x}{80} &=\frac{1.5 \mathrm{k}{g}}{400} \\ \frac{x}{80} &=\frac{1.5 \times 1000}{400} \\ x &=\frac{1500 \times 80}{400} \\ x &=15 \times 20 \\ x &=₹ 300 \end{aligned}$

∴ 1.5 kg cake cost = Rs 300

Question 4

i) In 3 months, a man earns  rs 18000

In $x$ months, a man earns Rs 30,000

i.e $\frac{x}{3}=\frac{30,000}{18000}$

$x=\frac{30 \times 3}{18}=\frac{90}{18}$

$x=5$

∴ In 5 months , a man earns Rs 30,000


ii)In 3 months , he earns Rs 18000

Let In 7 months , he earns Rs x

$\therefore \frac{x}{18,000}=\frac{7}{3}$

$x=\frac{7 \times 18000}{3}$

$x=7 \times 6,000$

$x=42000$

∴ In 7 months , he earns Rs 42,000

Question 5

Given 12 mangoes weight $24 \mathrm{~kg}$

Then 8 mangoes weight $x \mathrm{~kg}$

$\frac{x}{2 \cdot 4}=\frac{8}{12}$

$x=\frac{8 \times 2.4}{12}$

$x=\frac{8 \times 24}{12 \times 10}=\frac{16}{10}$☻

x = 1.6kg

∴ 8 mangoes weight 1.6kg

Question 6

Given 12 sheets of thick paper = 40 grams

Let x sheets of thick paper $=2 \frac{1}{2} k g$

=$\frac{5}{2} k g$

$\therefore \frac{x}{12}=\frac{5 / 2 k g}{40 g}$

$\frac{x}{12}=\frac{\frac{5}{2} \times 1000}{40} \mathrm{~g}$

$\frac{x}{12}=\frac{5 \times 500}{40}$

$\frac{x}{12}=\frac{5 \times 125}{10}$

$x=\frac{5 \times 125 \times 12}{10}$

x = 750

Question 7

For a distance of 90 km , a bus consumer = 25 litres 

Let for a distance of 288km, a bus consumer = x litres

$\begin{aligned} \therefore \frac{x}{25} &=\frac{288}{90} \\ x &=\frac{288 \times 25}{90} \end{aligned}$

$x=\frac{32 \times 25}{10}$

$x=16 \times 5$

$x=80$ litres.
 
∴ For a distance of 288 km, a bus consumer = 80 litres

Question 8

Given $\frac{4}{5}$ metre cloth costs $₹ 36 .$

Then $2 \frac{1}{5}$ metre cloth costs  x

$2 \frac{1}{5}=2+\frac{1}{5}=\frac{10+1}{5}=\frac{11}{5}$

$\begin{aligned} \therefore \frac{x}{36} &=\frac{11 / 5}{4 / 5} \\ \frac{x}{36} &=\frac{11}{5} \times \frac{8}{4} \end{aligned}$

$\frac{x}{36}=\frac{11}{4}$

$x=\frac{11}{4} \times 36$
 
∴ $2 \frac{1}{5}$ metre cloth costs Rs 99

Question 9

Given 15 men can pack 540 parcels per day 

Let x men can pack 396 parcels per day

i.e $\frac{x}{15}=\frac{396}{540}$

$x=\frac{396 \times 15}{540}$

x= 11

∴ 11men can pack 396 parcels per day

Question 10

Given $12 \mathrm{~kg}$ potatoes costs Rs  132

Then $1 \mathrm{~kg}$ potates costs  Rs  x

i.e $\frac{x}{132}=\frac{1}{12}$

$x=\frac{132 \times 1}{12}$

x=Rs 11

ஃ 1 kg potatoes cost Rs 11

Given $16 \mathrm{~kg}$ potatoes cost Rs 168

then $1 \mathrm{~kg}$ potatoes costs Rs  ?

Let the cost $₹ x$.

 i.e $\frac{x}{168}=\frac{1}{16}$

$x=\frac{168}{16}$

$x=₹\frac{21}{2}$

x = ₹ 10.5 

∴ 1kg potatoes = Rs 10.5

Compared to 1st case , 2nd case is better buy

 EXERCISE: 6.4


Question 1

$1 \mathrm{~km} / \mathrm{h}=\frac{5}{18} \mathrm{~m} / \mathrm{sec}$

i) $72 \mathrm{~km} / \mathrm{h}=72 \times \frac{5}{18}=4 \times 5=20 \mathrm{~m} / \mathrm{sec}$

ii) $9 \mathrm{~km} / \mathrm{h}=9 \times \frac{5}{18}=\frac{5}{2} \mathrm{~m} / \mathrm{sec}=2.5 \mathrm{~m} / \mathrm{sec}$

iii) $1.2 \mathrm{~km}= / \mathrm{min}, 1.2 \times \frac{1000 \mathrm{~m}}{60 \mathrm{sec}}=\frac{1200 \mathrm{~m} / \mathrm{sec}}{60}=20 \mathrm{~m} / \mathrm{sec}$

iv) $600 \mathrm{~m} / \mathrm{hour}$ = $600 \times \frac{1 \mathrm{~m}}{60\times60 \mathrm{sec}}$ = $\frac{1}{6} \mathrm{~m} / \mathrm{sec}$

Question 2

$1 \mathrm{~m} / \mathrm{sec}=\frac{18}{5} \mathrm{~km} / \mathrm{h}$

i) $15 \mathrm{~m} / \mathrm{sec}=1 \mathrm{5} \times \frac{18}{5} \mathrm{km} / \mathrm{h}=54 \mathrm{~km} / \mathrm{h}$

ii) $5 \mathrm{~m} / \mathrm{sec}$ =$\frac{1{5}}{10} \times \frac{18}{5}$= $\frac{54}{10} \mathrm{~km} / \mathrm{h}=5.4 \mathrm{~km} / \mathrm{h} .$

Question 3

$\begin{aligned} 30 \mathrm{~m} / \mathrm{sec}=30 \times \frac{18}{8} \mathrm{~km} / \mathrm{h} &=108 \mathrm{~km} / \mathrm{h} . \\ \text { since, } 108 \mathrm{~km} / \mathrm{h} &>30 \mathrm{~km} / \mathrm{h} \\ \text { So, } 30 \mathrm{~m} / \mathrm{sec} &>30 \mathrm{~km} / \mathrm{L} \end{aligned}$

Question 4

i) Given speed of aeroplane = 72km\h

Also distance between two cities = 1800km

We know time= $\frac{\text { Distance }}{\text { Speed }}$

$=\frac{1800}{720}$ hour

$=\frac{5}{2}$ honss

Time $=2 \frac{1}{2}$ hour


ii) Here time = 40 min, speed = 720km\h 

$\frac{720 \times 1000}km{60 \mathrm{~min}} \mathrm{~m}$

Now Distance $=$ Speed $\times$ Time

$=12,000 \times 40 \mathrm{~m}$

$=480000 \mathrm{~m}$

$=\frac{480000}{1000} \mathrm{~km}$

Distance $=480 \mathrm{~km}$


iii) Given Time $=15 \mathrm{sec}$, Speed $=720 \mathrm{~km} / \mathrm{h}$

$=720 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}$

$=200 \mathrm{~m} / \mathrm{sec}$

Distance =speed $\times$ Time

$=15 \times 200 \mathrm{~m}$

$\begin{aligned} &=3000 \mathrm{~m} \\ &=\frac{3000}{1000} \mathrm{~km} \\ \therefore \quad \text { Distance } &=3 \mathrm{~km} \end{aligned}$

Question 5

Given speed = 6km\h

$=\frac{6 \times 1000 \mathrm{~m}}{60 \mathrm{~min}}$

$=100 \mathrm{~m} / \mathrm{min}$

i) Distance
 $\begin{aligned} &=\text { Speed } \times \text { Time } \\ &=100 \times 5 \\ &=500 \text { metres } \\ &=0.5 \mathrm{~km} \end{aligned}$

ii) 
$\begin{aligned} \text { Time }=\frac{\text { Distance }}{\text { speed }} &=\frac{200}{100} \\ \text { Time } &=2 \mathrm{~min} \end{aligned}$


Question 6

Given Distance 
$\begin{aligned} &=50 \text { metres } \\ &=\frac{50}{1000} \mathrm{~km} \\ &=0.05 \mathrm{~km} \\ &=\frac{1}{20} \mathrm{~km} \end{aligned}$

Total Distance $=2 \times \frac{1}{20} \mathrm{~km}=\frac{1}{10} \mathrm{~km}$

Time taken
 $\begin{aligned} &=5 \mathrm{~min} \\ &=\frac{5}{60} \text { hours } \end{aligned}$

Now, speed $=\frac{\text { Distance }}{\text { Time }}$

$=\frac{(1 / 10) \mathrm{km}}{(5 / 60) \mathrm{hour}}$

$=\frac{1}{10} \times \frac{60}{5}$

$=\frac{6}{5}$

Speed $=1.2 \mathrm{~km} / \mathrm{k}$

Question 7

Given Time $=48$ minutes $=\frac{48}{60}$ hours

$=\frac{4}{5}$ hours.

Speed $=50 \mathrm{~km} / \mathrm{h}$

$\begin{aligned} \text { Distance } &=\text { Speed } \times \text { Jime } \\ &=50 \times \frac{4}{5} \\ &=40 \mathrm{~km} . \end{aligned}$

$\begin{aligned} \text { Time }=? & \text { : Speed }=30 \mathrm{~km} / \mathrm{k} \\ \text { Time }=& \frac{\text { Distance }}{\text { speed }} \end{aligned}$

$=\frac{4}{3}$ hours

$=\frac{4}{3} \times 60$ min

∴ Time $=80 \mathrm{~min}$








































































































































































































































































































0 comments:

Post a Comment