Tuesday, May 11, 2021

ML AGGARWAL CLASS 7 Chapter 2 Fractions and Decimals EXERCISE:2.1

 EXERCISE:2.1



Question 1


(i) Total 8 parts , 2 were shaded

$\therefore \frac{2}{8} \mathrm{th}$ part is shaded i.e $\frac{2}{8}=\frac{1}{4}$


(ii) Total 10 parts , 3 were shaded 

$\therefore \frac{3}{10}$th part is shaded


(iii) Total 12 Parts , 5 were shaded.

$\therefore \frac{5}{12}$ th part is shaded.


(iv) Total 13 parts , 7 were shaded

$\therefore \frac{7}{13}$ th part is shaded.



Question 2

Let the fraction be x 

$x \times 60=35$

$x=\frac{35}{60}$

$x=\frac{7}{12}$ th fraction.


Question 3


i) $2 \frac{7}{9}=2+\frac{7}{9}=\frac{2 \times 9+7}{9}=\frac{25}{9}$

ii) $5 \frac{4}{11}=5+\frac{4}{11}=\frac{5 \times 11+4}{11}=\frac{59}{11}$


Question 4

i) $\frac{73}{8}=\frac{9 \times 8+1}{8}=9+\frac{1}{8}=9 \frac{1}{8}$

ii) $\frac{94}{13}=\frac{13 \times 7+3}{13}=7+\frac{3}{13}=7 \frac{3}{13}$


Question 5

$\begin{aligned} \text { i) } \frac{3}{7}=\frac{x}{35} & \\ 3 \times 35=& 2 \times x \\ x &=\frac{3 \times 35}{{x}} \\ & x=15 \text { is missing namber } \end{aligned}$


(ii)
 $\begin{aligned} \frac{5}{x}=\frac{30}{18} & \\ 5 \times 18 &=30 \times x \\ & x=\frac{5 \times 18}{30} \end{aligned}$


(iii) $\frac{x}{9}=\frac{56}{32}$

$x \times 72=9 \times 56$

$x=\frac{9 \times 56}{72}$

$x=7$ is Missing number


Question 6


(i) $\frac{48}{72}$

HCF of 48 and 72 is 24

Divide the numerator and denominator of given fraction by 24

$\frac{48}{72}=\frac{48 \div 24}{72 \div 24}=\frac{2}{3} .$


(ii) $\frac{276}{115}$

HCF of 276 , 115 is 23.


(iii) $\frac{72}{336}$

HCF of 72,336 is 24

Divide numerator and denominator by 24

$\frac{72}{336}=\frac{72 \div 29}{336 \div 24}=\frac{3}{14}$


Question 7


(i) $\mathrm{LCM}$ of $4,6,8$ is 24

$\frac{3}{4}=\frac{3 \times 6}{4 \times 6}=\frac{18}{24}$

$\frac{5}{6}=\frac{5 \times 4}{6 \times 4}=\frac{20}{24}$

$\frac{7}{8}=\frac{7 \times 3}{8 \times 3}=\frac{21}{24}$

Thus the given fractions are equivalent to $\frac{18}{24}, \frac{20}{24}, \frac{21}{24}$


(ii) $\mathrm{LCM}$ of $25,10,40$ is 200 .

$\frac{7}{25}=\frac{7 \times 8}{25 \times 8}=\frac{56}{200}$

$\frac{9}{10}=\frac{9 \times 20}{10 \times 20}=\frac{180}{200}$

$\frac{19}{40}=\frac{19 \times 5}{40 \times 5}=\frac{95}{200}$

Thus the given fractions are equivalent to $\frac{56}{200}, \frac{180}{200}, \frac{95}{200}$


Question 8


(i) LCM of 9,3,21 is 63

$\frac{2}{9}=\frac{2 \times 3}{9 \times 7}=\frac{14}{63}$

$\frac{2}{3}=\frac{2 \times 21}{3 \times 21}=\frac{42}{63}$

$\frac{8}{21}=\frac{8 \times 3}{21 \times 3}=\frac{24}{63}$

Descending order is $\frac{2}{3}, \frac{8}{21}, \frac{2}{9}$


(ii)  LCM  of 5,7,10=70

$\frac{1}{5}=\frac{1 \times 14}{5 \times 14}=\frac{14}{70}$

$\frac{3}{7}=\frac{3 \times 10^{-}}{7 \times 10}=\frac{30}{70}$

$\frac{7}{10}=\frac{7 \times 7}{10 \times 7}=\frac{49}{70}$

Descending order is $\frac{7}{10}, \frac{3}{7}, \frac{1}{5}$


Question 9


(i) LCM of  7,8,14,21 is 168

$\frac{5}{7}=\frac{5 \times 24}{7 \times 24}=\frac{120}{168}$

$\frac{3}{8}=\frac{3 \times 21}{8 \times 21}=\frac{63}{168}$

$\frac{9}{14}=\frac{9 \times 12}{14 \times 12}=\frac{108}{168}$

$\frac{20}{21}, \frac{20 \times 8}{21 \times 8}=\frac{160}{168}$

Ascending order is $\frac{3}{8}, \frac{9}{14}, \frac{5}{7}, \frac{20}{21}$


(ii) LCM of $18,15,24,12$ is 360

$\frac{13}{18}=\frac{13 \times 20}{18 \times 20}=\frac{260}{360}$

$\frac{8}{15}=\frac{8 \times 24}{15 \times 24}=\frac{192}{360}$

$\frac{17}{24}=\frac{17 \times 15}{24 \times 15}=\frac{255}{360}$

$\frac{7}{12}=\frac{7 \times 30}{12 \times 30}=\frac{210}{360}$

Ascendig order is $\frac{8}{15}, \frac{7}{12}, \frac{12}{24}, \frac{13}{18}$



 EXERCISE:2.2



Question 1


(i) $\frac{4}{3}+\frac{3}{8}$

$\mathrm{LCM}$ of 3,8 is 24

$=\frac{4 \times 8+7 \times 3}{24}$

$=\frac{32+21}{24}=\frac{53}{24}$


(ii) $8 \frac{1}{2}-3 \frac{5}{8}$

$8 \frac{1}{2}=8+\frac{1}{2}=\frac{8 x 2+1}{2}=\frac{16+1}{2}=\frac{17}{2}$

$3 \frac{5}{8}=3+\frac{5}{8 .}=\frac{3 \times 8+5}{8}=\frac{24+5}{8}=\frac{29}{8}$

$=\frac{17}{2}-\frac{29}{8}$

$=\frac{17 \times 4-29 \times 1}{8}$

$=\frac{68-29}{8}$

$=\frac{39}{8}$


(iii) $\frac{5}{12}+\frac{1}{18}-\frac{2}{9}$

Lcm of $12,18,9$ is 36

$=\frac{5 \times 3+1 \times 2-2 \times 4}{36}$

$=\frac{15+2-8}{36}$

$=\frac{9}{36}$

$=\frac{1}{4}$


Question 2


(i) $7 \frac{3}{4}=7+\frac{3}{4}=\frac{7 \times 4+3}{4}=\frac{28+3}{4}=\frac{31}{4}$

$3 \frac{5}{6}=3+\frac{5}{6}=\frac{3 \times 6+5}{6}=\frac{18+5}{6}=\frac{23}{6}$

$=\frac{31}{4}-\frac{23}{6}+\frac{7}{8}$

$\begin{array}{r|l}2&4,6,8\\ \hline 2& 2,3,4 \\ \hline&1,3,2\end{array}$

LCM =24

$=\frac{31 \times 6-23 \times 4+7 \times 3}{24}$

$=\frac{186-92+21}{24}$

$=\begin{array}{l}\frac{207-92}{24} \\ =\frac{115}{24} .\end{array}$



(ii)$6 \frac{1}{8}=6+\frac{1}{8}=\frac{6 \times 8+1}{8}=\frac{49}{8}$

$2 \frac{1}{12}=2+\frac{1}{12} = \frac{2 \times 12+1}{12}=\frac{25}{12}$

$5 \frac{1}{10}=5+\frac{1}{10}=\frac{5 \times 10+1}{10}=\frac{51}{10}$

$3 \frac{7}{25}=3+\frac{7}{25}=\frac{3 \times 25+7}{25}=\frac{75+7}{25}=\frac{82}{25}$

$=\frac{49}{8}-\frac{25}{12}-\frac{51}{10}+\frac{82}{25}$

$\begin{array}{r|l}2&8,10,12,25\\ \hline 5& 4,5,6,25 \\ \hline 2&4,1,6,5\\ \hline&2,1,3,5\end{array}$

LCM = 600

$=\frac{49 \times 75-25 \times 50-51 \times 60+82 \times 24}{600}$

$=\frac{1333}{600}$



Question 3


Jaishree studies daily for $5 \frac{2}{3}$ hours

i.e $5+\frac{2}{3}=\frac{5 \times 3+2}{3}=\frac{17}{3}$ hours

She devoted has time for science and mathematics $2 \frac{4}{5}=2+\frac{4}{5}=\frac{2 \times 5+4}{5}=\frac{14}{5}$ hours

Total time = $\frac{17}{3}$ hrs

Let the time for other subject be x

$\begin{aligned} \frac{14}{5}+x &=\frac{17}{3} \\ x &=\frac{17}{3}-\frac{14}{5} \\ x &=\frac{17 \times 5-14 \times 3}{15} \end{aligned}$

$x=\frac{85-42}{15}$

$x=\frac{43}{15}$ hrs for other subjects



Question 4


Ramesh solved $\frac{2}{7}$ part of an exercise 

Reshma solved $\frac{4}{5}$ part

LCM of 7, 5 is 35

$\frac{2}{7}=\frac{2 \times 5}{7 \times 5}=\frac{10}{35} ; \frac{4}{5}=\frac{4 \times 7}{5 \times 3}=\frac{28}{35}$

$\frac{4}{5}>\frac{2}{7}$

i.e Ramesh Solved lesser part and by $\frac{28}{35}-\frac{10}{35}$ i.e $\frac{18}{35}$ part



Question 5


Sohali had Rs $35 \frac{3}{5}$ i.e $\frac{35 \times 5+3}{5}$ = Rs $\frac{178}{5}$

She got Rs $16 \frac{1}{15}$ From her mother 

i.e $\frac{16 \times 15+1}{15}=₹ \frac{241}{15}$

She spent on food Rs $28 \frac{2}{3}=\frac{28 \times 3+2}{3}$

=Rs $\frac{86}{3}$ 


Money left = ?

Total money she had = Rs  $\frac{178}{5}+\frac{241}{15}$

$=\frac{178 \times 3+241 \times 1}{15}$

$=\frac{534+241}{15}$

$=\frac{275}{15}$

Out of which she spent Rs on food i.e $\frac{86}{3}$

ஃ Money left = Rs $\frac{775}{15}-\frac{86}{3}$

=$\frac{775 \times 1-8 \times 5}{15}$

=$\frac{77-430}{15}$

=$\frac{345}{15}$

=$₹ 23$

ஃ She had left with Rs 23 with her 




 EXERCISE:2.3


Question 1


(i) $7 \times \frac{3}{5}=\frac{7 \times 3}{5}=\frac{21}{5}$

ii) $21 \times \frac{3}{14}=\frac{3 \times 3}{2}=\frac{9}{2}$

iii) $3 \frac{2}{5} \times 8=\frac{17}{5} \times 8=\frac{136}{5}$

iv) $5 \times 6 \frac{3}{4}= 5 \times \frac{27}{4}=\frac{135}{4}$


Question 2

 
i)$\frac{2}{3} \times 18=2 \times 6=12$ 

ii) $\frac{1}{2} \times 4 \frac{2}{9}=\frac{1}{7} \times \frac{38}{9}=\frac{19}{9}$

iii)$\frac{5}{8} \times 9 \frac{2}{3}=\frac{5}{8} \times \frac{29}{3}=\frac{145}{24}$



Question 3

i) $\frac{3}{7} \times \frac{5}{9}=\frac{5}{7 \times 3}=\frac{5}{21}$

ii) $\frac{2}{5} \times 5 \frac{1}{4}=\frac{2}{5} \times \frac{21}{4}=\frac{21}{10}$.

iii) $2 \frac{1}{3} \times 3 \frac{4}{21}=\frac{7}{3} \times \frac{109}{21}=\frac{109}{9}$

iv) $3 \frac{1}{6} \times 7 \frac{4}{23}=\frac{19}6 \times \frac{16555}{23}=\frac{19 \times 55}{2 \times 23}=\frac{1045}{46}$.


Question 4


i) $\frac{1}{3} \times 42=Rs 14$

ii) $\frac{3}{7} \times 5 \frac{1}{4}=\frac{3}{7} \times \frac{21}{4}=\frac{3 \times 3}{4}=\frac{9}{4} \mathrm{~kg}$

iii) $4 \frac{1}{2} \times 5 \frac{1}{2}=\frac{9}{2} \times \frac{11}{2}=\frac{99}{4} \cdot$ metres

Question 5


(i)$\frac{2}{2} \times \frac{3}{4} \quad ; \quad \frac{3}{8} \times \frac{3}{8}$

$=\frac{3}{7 \times 2} \quad ; \quad \frac{3 \times 1}{1 \times 8}$

$=\frac{3}{14} \quad ; \quad \frac{3}{8}$

$\frac{3}{14}=\frac{3 \times 4}{14 \times 4}=-\frac{12}{56} \quad ; \frac{3}{8}=\frac{3 \times 7}{8 \times 7}=\frac{21}{56} .$

$\therefore 21>12 .$

$\therefore \frac{3}{8}$ is greater than $\frac{3}{14}$


(ii) $\frac{1}{7} \times \frac{6}{7} ; \quad \frac{2}{3} \times \frac{3}{7}$

$=\frac{1 \times 3}{7} \quad ; \quad \frac{2 \times 1}{7}$

$=\frac{3}{7} \quad ; \frac{2}{7}$

As $\frac{3}{7},>\frac{2}{7} \quad(\because 3>2)$


Question 6

Given, 1 metre cloth costs Rs $31 \frac{3}{4}$ = Rs $\frac{127}{4}$

$5 \frac{1}{2}$ metres cloth costs = ?

Let it be equal = x 

$5 \frac{1}{2}=\frac{5 \times 2+1}{2}=\frac{11}{2}$

$\frac{11 / 2}{1}=\frac{x}{(127 / 4)}$

$\frac{11}{2}=\frac{x \times 4}{127}$

$x=\frac{11 \times 127}{2 \times 4}$

X = $=\frac{1397}{8}$ =  Rs $174 \frac{5}{8}$

$\therefore 5 \frac{1}{2}$ metre cloth costs is $174 \frac{5}{8}$


Question 7

Speed of a car = $\operatorname{105} \frac{1}{5} \mathrm{kmph}$

$=\frac{526}{5} \mathrm{kmph}$

Time taken = $3 \frac{3}{5}$ hours$=\frac{18}{5}$ hours

$\begin{aligned} \text { Distance } &=\text { speed } \times \text { Time } \\ &=\frac{526}{5} \times \frac{18}{5} \mathrm{~km} \end{aligned}$

Distance $=\frac{9468}{25} \mathrm{~km}$


Question 8

For 1 litre of petrol , the car runs 16km
For $2 \frac{3}{4}$ litres of petrol , the car runs ? km 

Let the car runs be x km

$2 \frac{3}{4}=\frac{11}{4}$

i.e $\frac{x}{16}=\frac{11 / 4}{1}$

$\frac{x}{16}=\frac{11}{4}$

$x=\frac{11 \times 16}{4}$

$x=44 \mathrm{~km}$


Question 9

In one hour, Sushant reads $\frac{1}{3}$ part of book 

Let In $2 \frac{1}{5}=\frac{11}{5}$ Hours, he reads x part of book 

i.e 
$\begin{aligned} \frac{x}{(1 / 3)} &=\frac{(11 / 5)}{(1)} \\ 3 x &=\frac{11}{5} \\ x &=\frac{11}{3 \times 5} \end{aligned}$

$x=\frac{11}{15}$ part of book


Question 10

Gold and copper ornament weigh = 52grams 

Out of which, part of copper is $\frac{2}{13} \mathrm{th}$

Then the copper weighs -$\frac{2}{13}, \times 52$

= 8gms

Remaining Gold weighs = 52- 8 

= 44grams



Question 11


Total no.of students in a class = 40

(i) Out of them, students like to study = $\frac{1}{5}th$ of total 

$=\frac{1}{5} \times 40$

$=8$

(ii) Students like to study mathematics = $\frac{2}{5} th$ of Total

$=\frac{2}{5} \times 40$

=16 
 
(iii) Fraction of total no . of students like to study 

Science = $1-\left\{\frac{1}{5}+\frac{2}{5}\right\}$

$1-\left\{\frac{1+2}{5}\right\}$

=$1-\frac{3}{5}$

$=\frac{5-3}{5}$

$=\frac{2}{5}$

Fraction of students who like to study science = $\frac{2}{5} \th$ of total 

Question 12

A rectangular sheet is having length = $12 \frac{1}{2}(m)=\frac{25}{2} c m=L$

Width B= $10 \frac{2}{3} \mathrm{~cm}=\frac{32}{3}$Cm

(i) We know perimeter of rectangle = $2 \times($ Length + width  $)$

$=2 \times\left(\frac{25}{2}+\frac{32}{3}\right)$

$=2 \times\left(\frac{25 \times 3+32 x^{2}}{6}\right)$

$=2 \times\left(\frac{75+64}{6}\right)$

$=2 \times\left(\frac{139}{6}\right)$

∴ Perimeter of rectangle = $\frac{139}{3}$ cm


(ii) Area of rectangle = length $\times$ width 

$=\frac{25}{2} \times \frac{32}{3}$

$=\frac{25 \times 16}{7 \times 1}$

$=\frac{400}{3}$

$=133 \frac{1}{3} \mathrm{~cm}^{2}$
 
∴ Area of rectangle = $133 \frac{1}{3} \mathrm{~cm}^{2}$.


Question 13


Part of students are girls = $\frac{25}{54}$

Then part of students are boys = $1-\frac{25}{54}$

$=\frac{54-25}{54}$

$=\frac{29}{54}$

Given number of  boys is 2030

Let Total no. of students = x

Now, $\frac{29}{54} \times x=2030$

$x=\frac{2030 \times 54}{29}$

$x=3780$

∴ Total no. of students = 3780 

No. of girls = Total -No of boys 

= 3780 - 2030 = 1750


Question 14

Let number of trees in an archard = 'x'

Given banana trees are 148 in number 

Also orange trees are $\frac{1}{5}$th total 

Mango trees are $\frac{3}{13}$th total 

Now, the part of banana trees= $1=\left\{\frac{1}{5}+\frac{3}{13}\right\}$

=$1-\frac{13+3 \times 5}{65}$

=$1-\frac{13+15}{65}$

$=1-\frac{28}{65}$

$=\frac{65-28}{65}$

$=\frac{37}{65}$

Now , as banana Trees = 148 

ஃ $\frac{37}{65}$ th of total = 148

i.e 
$\begin{aligned} \frac{37}{65} \times x &=148 \\ x &=\frac{148 \times 65}{3.7}=260 . \end{aligned}$

ஃ Total no. of trees in an archard = 260


 

 EXERCISE:2.4


Question 1 


(i) Reciprocal of $\frac{3}{7}=\frac{1}{(3 / 7)}=\frac{7}{3} .$

ii) Reciprocal of $\frac{13}{9}=\frac{1}{\left(\frac{13}{9}\right)}=\frac{9}{13}$

iii) Reciprocal of $8=\frac{1}{8}$

Question 2


i) 
$\begin{aligned} 14 \div \frac{5}{6} &=\frac{14}{(5 / 6)} \\ &=\frac{14 \times 6}{5} \\ &=\frac{84}{5}=16 \frac{4}{5} . \end{aligned}$


ii) 
$\begin{aligned} 5 \div 3 \frac{4}{7} &=5 \div \frac{25}{7} \\ &=\frac{5}{(25 / 7)} \\ &=\frac{15 \times 7}{255} \\ &=\frac{7}{5} . \end{aligned}$


iii)$3 \frac{1}{5} \div 1 \frac{2}{3}=\frac{16}{5} \div \frac{5}{3} .$

$=\frac{16 / 5}{5 / 3}$

$=\frac{16}{5} \times \frac{3}{5}$

$=\frac{48}{25}=1 \frac{23}{25}$


iv)
 $\begin{aligned} 2 \frac{5}{8} \div 1 \frac{1}{6} &=\frac{21}{8} \div \frac{7}{6} \\ &=\frac{21 / 8}{7 / 6} \\ &=\frac{27}{8} \times \frac{6}{7} \\ &=\frac{9}{4}=2 \frac{1}{4} . \end{aligned}$



Question 3

Total length of cloth = 7 7 $\frac{1}{2}$ metres

$=\frac{155}{2}$

Each piece of cloth length requried = $5 \frac{1}{6}$

$\frac{31}{6}$

∴ Now total no. of pieces of cloth = $\frac{155 / 2}{31 / 6}$

$\frac{155}{2} \times \frac{6}{31}$

= 15pieces


Question 4

Let the number multiplied to $4 \frac{7}{8}$ be $x$

$4 \frac{7}{8}=4+\frac{7}{8}=\frac{4 \times 8+7}{8}=\frac{32+7}{8}=\frac{39}{8}$

Required answer = $87 \frac{3}{4}$

i.e $\frac{39}{8} \times x=87+\frac{3}{4}$

$\frac{39 x}{8}=\frac{87 \times 4+3}{4}$

$\frac{39x}{8}=\frac{351}{4}$

$x=\frac{351+8}{4 \times 39}$

$x=9 \times 2$

x=18

∴ Number multiplied = 18

Question 5

Part of milk each students gets = $\frac{1}{3}$ th of Total

Total consumption of milk = $57 \frac{2}{3}$ litres

$=\frac{57 \times 3+2}{3}$

$=\frac{123}{3}$

Let the number of students in hosted b 'x '

$\frac{1}{3} \mathrm{th}$ of Total $=57 \frac{2}{3} .$

$\frac{1}{3} \times x=\frac{173}{3}$

$x=\frac{173 \times 3}{3 \times 1}$

x=173 

∴ Total number of students in hostel = 173

Question 6


Given cost of $5 \frac{1}{4}$ kg apple =Rs 336

Let Cost of 1kg apples = x 

$5 \frac{1}{4}=5+\frac{1}{4}=\frac{5 \times 4+1}{4}=\frac{21}{4} .$

$\begin{aligned} \frac{x}{336} &=\frac{1}{(21 / 4)} \\ \frac{x}{336} &=\frac{4}{21} \\ x &=\frac{4 \times 336}{21} \\ x &=64 \end{aligned}$

∴ Cost of apples = Rs 64 per kg


Question 7

Given area of rectangular plot = $68 \frac{3}{4} \operatorname{sq} \cdot m$

$=\frac{68 \times 4+3}{4}$

$=\frac{275}{4} \mathrm{sqm}$

Also length of rectangular plot = $12 \frac{1}{2} \mathrm{~m}$

$=\frac{12 \times 2+1}{2}$

$=\frac{25}{2} m$

We know Area of rectangle $A=$ Lensth $\times$ width

width $\times \frac{27}{2}=\frac{275}{4}$

$\quad$ width $=\frac{275 \times 2}{25 \times 4}$

$=\frac{11}{2}$

$\therefore$ Width $=5 \frac{1}{2} m$


Question 8


Given Cost of $5 \frac{1}{2}=\frac{11}{2} \mathrm{~kg}$ of sugar $=Rs 206 \frac{1}{4}$

$=\frac{206 \times 4+1}{4}$

=Rs $\frac{825}{4}$

Let Cost of $8 \frac{1}{4}=\frac{33}{4}$ Kg of sugar be 'x '

$\frac{x}{\left(\frac{825}{4}\right)}=\frac{33 / 4}{11 / 2}$

$\frac{4 x}{825}=\frac{33}{4} \times \frac{2}{11}$

$x=\frac{33}{4} \times \frac{2}{11} \times \frac{825}{4}$

$x=\frac{3 \times 825}{2 \times 4}$

$x= \frac{2425}{8}= 309 \frac{3}{8}$

∴ Cost of $8 \frac{1}{4}$ kg sugar = Rs $309 \frac{3}{8}$


Question 9


In 2 hours, Renu Cimpleted $\frac{2}{2}$ part of work.

Let 

     In $1 \frac{1}{4}$ hours, RenU Completes $x^{\prime}$ past of work

1 $\frac{1}{4}=1+\frac{1}{4}=\frac{\mid x y+1}{4}=\frac{5}{y}$

i.e $\frac{x}{(2 / 3)}=\frac{5 / 4}{2}$

$x=\frac{5}{4 \times 2} \times \frac{2}{3} .$

$x=\frac{5}{12}$



 EXERCISE:2.5


Question 1

i) $20.03=2 \times 10+0 \times 1+0 \times \frac{1}{10}+3 \times \frac{1}{100}$

ii) $200.03=2 \times 100+0 \times 10+0 \times 1+0 \times \frac{1}{10}+3 \times \frac{1}{100}$

iii) $2.034=2 \times 1+0 \times \frac{1}{10}+3 \times \frac{1}{100}+4 \times \frac{1}{1000}$.


Question 2

i) Place value of digit 2 in $2.56$ is $2 \times 1=2$

ii) place value of digit 2 in $21.37$ is $2 \times 10=20$

iii) place value of digit 2 in $10.25$ is $2 \times \frac{1}{10}=\frac{2}{10}$.

iv) place Value of digit 2 in $63 \cdot 352$ is $2 \times \frac{1}{1000}=\frac{2}{1000}$.


Question 3


i) $0.8=\frac{8}{10}=\frac{4}{5}$

ii) $0.225=\frac{225}{1000}=\frac{9}{40}$

iii) $0.0092=\frac{92}{10000}=\frac{23}{2500}$

iv) $3.025=\frac{3025}{1000}=\frac{121}{40}$

Question 4

i) $5.05=\frac{505}{100}=5+\frac{5}{100}=5+\frac{1}{20}=5 \frac{1}{20}$

ii) $63.125=63+\frac{125}{1000}=63+\frac{1}{8}=63 \frac{1}{8}$

iii) $17.075=17+\frac{75}{1000}=17+\frac{3}{40}=17 \frac{3}{40}$.

iv) $317.0006=312+\frac{6}{10000}=317+\frac{3}{5000} = 317 \frac{3}{5000}$

Question 5

i) $\frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{6}{10}=0.6$

ii) $\frac{7}{8}=\frac{7 \times 125}{8 \times 125}=\frac{875}{1000}=0.875$

iii) $3 \frac{5}{16}=\frac{3 \times 16 \p 5}{16}=\frac{53}{16}=\frac{53 \times 625}{16 \times 10000}=\frac{33125}{10000}=3.3125$

iv) $137 \frac{13}{625}=137+\frac{13}{625}=137+\frac{13 \times 16}{625 \times 16}=137+\frac{208}{10000}$

$=137+0.0208$

$=137.0208$

Question 6

(i) 0.5 or 0.05 are like decimal mumbers

We know that whole number parts of given number are equal 

Let us their digits at tenth place 

In both number , digits at tenth place in 0.5 is 5 and digits at tenth place in 0.05 is 0

Since $5>0$, So 0.5 $>0.05 .$


(ii)Given numbers are 7,0.7

Whole numbers parts of given numbers are not equal

In number 7 , the whole number is 7

In number $0.7$, the whole number is 0 .

since $7>0$, so $7>0.7$


(iii) Given numbers are 2.03 or 2.30

We note that whole number parts of given number are equal 

Let us compare their tenth digits 

In 2.03 digits at tenth place is 0 

In 2.30 digits at tenth place is 3

Since $3>0$, so $2.30>2.03$


(iv) Given numbers are 0.80 or 0.88

We know that whole number parts of given number are equal

Let us compare their tenth digits 

In both number , digits at tenth place = 8

So, we compare their hundreth place 

In 0.80 digits at hundreth place = 0 

In 0.88 , digits at hundredth place = 8

Since $8>0$, so $0.88>0.80$.


Question 7

i) Campare whole numbers

$83>38>3 \quad$ (or) $\quad 3<38<83$

Compare tenth digits numbers in $38,02,38 \cdot 021,38.002$

In $38.02$, the tenth digit is 0

In $38.021,38.002$, the tenth digit is 0

Compare hundredth digits

In $38.02,38.021$, he hundred th digit is 2

But In $38.002$, the hundred th digit is 0

$\quad since \quad 0<2, \quad 38 \cdot 002<(38.02,38\cdot 021)$

Compare thousandth's place in 38.020, 38.021

In 38 .020 the thousandth place is 0

In 38.021 the thousandth place is 1

Since $0<1$, So $38.020<38.021$

∴ So the ascending order is $3.802<38.002<38.420<38.21$
$<83: 02$



(ii)  In all the given numbers except $64.542$, all are having
46 as their whele number.

So $64.542$ is the highest $(m)$ largest number

Comparing tenth digits

In $46.542$, the tenth digit is 5

In $46.452$, the tenth digit is 4

In $46.254$, the tenth digh is 2

Since $2<4<5$, so $46.254<46.452<46542$

Compare hundredth and thousand place in 46.05, 46.0542

In both numbers hundredth and tenth digits is same 5,0

In 46.050,the thousandth digit is 0

In 46.0542, the thousandth digits is 4

Since $0<4$, so $46.050<46.0542$

∴ Ascending order is $46.050<46.0542<46.254<46.452<46.542<64.542$

Question 8


(i) We know that $5>1>0$. (whole numbers)

Now $1.87,1.9,1.78$

The tenth digit are 8 , 9 , 7

Since $9>8>7$, so $1.9>1.87>1.78$

Now In 0.93, 0.39

The tenth digits are 9, 3

Since $9>3$, so $0.93>0.39$

∴ Desending order is $5.6>1.9>1.87>1.78>0.93>0.39$


(ii) We know that $71 \geqslant 20>3>2>0$ in whole number

Compare Tenth digits in $2.01,2.14$

In $2.01$, The tenth digit is 0

In $2.14$, the tenth disit is 1

since $1>0$, so $2.14>2.01$

∴ Descending order is $71.201>20.1>3.1>2.14>2.01>0.652$

Question 9

(i) 
$\begin{aligned} 1 \text { Rupee } &=100 \text { paise } \\ \text { So } 1 \text { paise } &=\frac{1}{100} \text { rupee } \end{aligned}$

$\begin{aligned} 7 \text { paise }=7 \times \frac{1}{100} \text { rupee } &=\frac{7}{160} \text { rypee } \\ &=0.07 \text { rupee } \end{aligned}$


(ii) 77 rupees 77 paise

$=\left[77+77 \times \frac{1}{100}\right] \mathrm{rupee}$

$=\left[77+\frac{77}{100}\right]$ rupee

$=[27+0.77]$ ruper

$=77.77$ rupee


(iii) 235 paise $=235 \times \frac{1}{100}$ ruper $=$ 2.35. rupee

Question 10

We know 1m =100cm $\Rightarrow k m=\frac{1}{100} m$

$1 \mathrm{~km}=1000 \mathrm{~m} \Rightarrow \mathrm{1m}=\frac{1}{1000} \mathrm{~km}$

5cm =$5 \times \frac{1}{100} m=0.05 \mathrm{~m}$

$0.05 m=\frac{5}{100} m=\frac{5}{100} \times \frac{1}{1000} km=0.00005 \mathrm{~km}$\

Question 11

We know 1kg =100g 

So $\quad 1 g=\frac{1}{1000} k_{g}$

i) $200 g=200 \times \frac{1}{1000} k_{g}=\frac{2}{10} k_{9}=0.2 \mathrm{~kg}$

ii) $3470 g=347 \times \times \frac{1}{1000} k_{9}=\frac{347}{100} \mathrm{~kg}=3.47 \mathrm{~kg}$

iii)$4 \mathrm{~kg} 8 \mathrm{~g}= \left(4+\frac{8}{1000}\right) \mathrm{kg}=(4+0.008) \mathrm{kg}=4.008 \mathrm{~kg}$


Question 12


i) $S u m=5.765+9.2+3.08$

$\begin{array}{r}5.765 \\+9.200 \\+3.080 \\\hline 18.045\end{array}$


(ii) $\begin{array}{r}15.4900 \\+8.3572 \\+0.9030 \\+\quad 7.8000 \\\hline 32.5502\end{array}$


Question 13

(i)
$\begin{array}{r}72.530 \\-\quad 46.782 \\\hline 25.748\end{array}$


(ii)Given the positive and negative numbers seperately 

Positive numbers         Negative numbers
18.376                          $\begin{array}{r}5.4300 \\+8.8976 \\\hline 14.3276\end{array}$

$\begin{array}{r}18.3760 \\-14.3276 \\\hline4.0484\end{array}$


(iii) positive number         
        28. 5

$\begin{array}{l}\text { Negative number } \\9.708 \\+6.234 \\\hline 15.942\end{array}$

$\begin{array}{r}28.500 \\-15.942 \\\hline=12.558\end{array}$


(iv) Positive numbers

$\begin{array}{l}8.20 \\2.67 \\\hline 10.87\end{array}$

Negative numbers 

$\begin{array}{r}4.5600 \\+0.7912 \\\hline 5.3512\end{array}$

$\begin{array}{r}10.8700 \\-5.3512 \\\hline5.5188\end{array}$


Question 14

i) Let the number added = x 

$\begin{aligned} x+3.56 &=13.016 \\ x &=13.016-3.56 \end{aligned}$

$\begin{array}{r}13.016 \\-3.560 \\\hline 9.456\end{array}$

x = 9.456


(ii) Let the number Substracted be x

$\begin{aligned} 30-x &=23.709 \\ x &=30-23.709 \end{aligned}$

$\begin{array}{r}30.000 \\-23.709 \\\hline 6.291\end{array}$

x=6.291


(iii) Excess of 20.4 over 9.7403 is 

= 20.4-9.7403

$\begin{array}{r}20.4000 \\-9.4403 \\\hline 10.6597\end{array}$



 EXERCISE:2.6


Question 1

\text { i) } 2.7 \times 4=\frac{27}{10} \times 4

$=\frac{108}{10}=10.8$


ii) $2.71 \times 5=\frac{271}{100} \times 5$

$=\frac{1355}{100}=13.55 .$


iii) $2.5 \times 0.3=\frac{25}{10} \times \frac{3}{10}$

$=\frac{75}{100}=0.75$


iv)$2.3 \times 4.35=\frac{23}{10} \times \frac{435}{100}$

$=\frac{10005}{1000}=10: 005$


v) $238.06 \times 7.5=\frac{23806}{100} \times \frac{75}{10}=\frac{1785450}{1000}=1785.45 .$


vi)$0.79 \times 32.4=\frac{79}{100} \times \frac{324}{10}=\frac{25,596}{1000}=25.596$


vii) $1.07 \times 0.02=\frac{107}{100} \times \frac{2}{100}=\frac{214}{10000}=0.0214 .$


viii) $10.05 \times 1.05=\frac{1005}{100} \times \frac{105}{100}=\frac{105.525}{10000}=10.5525$


Question 2


i) (diagram to be added)

= 2.7


ii) $126.35 \div 7$

(diagram to be added)

Ans = 18.05


iii) $22.5 \div 1.5=\frac{22.5}{1.5} \times \frac{10}{10}=\frac{225}{15}$

(diagram to be added)

Hence, $22.5 \div 1.5=15$.


iv) $4 \cdot 28 \div 0.02=\frac{4.28}{0.02} \times \frac{100}{100}=\frac{428}{2}$

(diagram to be added)

Hence, $4.28 \div 0.02=214$.


v)$3.645 \div 1.35=\frac{3.645}{1.350} \times \frac{1000}{1000}=\frac{3645}{1350}$

(diagram to be added)

Hence, $3.645 \div 1.35=2.7$


vi)$0.728 \div 0.04=\frac{0.728}{0.040} \times \frac{1000}{1000}=\frac{782}{40}$

$=\frac{182}{10}$

$=18.2$


vii)$13.06 \div 0.08=\frac{13.01}{0.08} \times \frac{100}{100}=\frac{1306}{8}$

(diagram to be added)

Hence, $13.06 \div 0.08=163.25$.


viii)$58.635 \div 4.5=\frac{58.635}{4.500} \times \frac{1000}{1000}=\frac{58635}{4500}$

(diagram to be added)

Hence, $58.635 \div 4.5=13.03$


Question 3


i) $5.9 \times 10=59$

$5.9 \times 100=590$

$5.9 \times 1000=5900$

To Multiply by 10, shift decimal point to the right by one place


ii) $3.76 \times 10=37.6$

$3.76 \times 100=376$

$3.76 \times 1000=3760$


iii) $0.549 \times 10=5.49$

$0.549 \times 100=54.9$

$0.549 \times 1000=549$

Question 4

To divide a decimals number by 10,100,1000 Shift decimal point to the left by one, two three places.

i) $4.8 \div 10=0.48 \quad 4.8 \div 1000=0.0048$

$4.8 \div 100=0.048$

ii)
 $\begin{aligned} 38.53 \div 10 &=3.853 \\ 38.53 \div 100 &=0.3853 \\ 38.53 \div 1000 &=0.03853 . \end{aligned}$


iii) $128.9 \div 10=12.89$

$128.9 \div 100=1.289$

$128.9 \div 1000=0.1289$

Question 5

Given length = 5.7cm ; Breadth = 3.5cm

Area of rectangle A =Length $\times$ Breadth

$=5.3 \times 3.5$

$=\frac{57}{10} \times \frac{35}{10}$

$=\frac{1995}{100}$

$=19.95 \mathrm{Cm}^{2} .$

Question 6

Given, cost of one metre cloth is Rs 38.50

Cost of 3.6 metre cloth is $3.6 \times 38.5$

$=\frac{36}{10} \times \frac{355}{10}$

$=\frac{13860}{100}$

$=₹ 138.60$


Question 7


One liter of petrol covers distance $=45.3 \mathrm{~km}$

$5.9$ litres of petrol covers distance $=5.9 \times 45.3 \mathrm{~km}$

$=\frac{59}{10} \times \frac{453}{10} \mathrm{~km}$

$=\frac{26727}{100} \mathrm{~km}$

$=267.27 \mathrm{~km}$


Question 8

$1 \mathrm{~kg}$ of pure milk contains $=0.245 \mathrm{kg}$ fat

$12.8 \mathrm{~kg}$ of milk contains $=12.8 \times 0.245$'

=$\frac{128}{10} \times \frac{245}{1000}$

=$\frac{31360}{10000}$

=$3.136 \mathrm{~kg}$


Question 9

6 Children Shared equally

Total rupees wik them ar $\overline{2} 242 \cdot 46$.

Then each Childred shared $=5 \frac{242.46}{6}$

$=\frac{\left(\frac{24246}{100}\right)}{6}$

$= \frac{24246}{100 \times 6}$

$= \frac{4041}{100}$

Rs $40.41$

∴ Each Children shared Rs 40.41

Question 10

$2.4$ litres of petrol coress a distance $=43.2 \mathrm{~km}$

one litre of petrol Covers a distance $=\frac{43.2}{2 \cdot 4} \mathrm{~km}$

$=\frac{432 / 10}{24 / 10}$

$=\frac{432}{10} \times \frac{10}{24}$

$=\frac{432}{24}$

=18km


Question 11

Total 8.4 litres of icecream 

One cone can be filled with 35 millilitres of icecream 

Number of icecream cones can be filled 

$=\frac{8.4 \times 1000 \mathrm{ml}}{35 \mathrm0{ml}}$  (As 1 litre = 1000ml)

$=\frac{8400}{35}$

Number of icecream cones = 240

Question 12

Product of two decimal numbers = 38.745 

One of the number is 2.7

Let the other number be x 

i.e $x \times 2.7=38.745$

$-x=\frac{38.745}{2.7}$

$x=\frac{38745 / 1000}{27 / 10}$

$x=\frac{38745}{1000} \times \frac{10}{27}$

$x=\frac{1435}{100}$

$x=14.75$

The other number is 14.35


Question 13

Let the number be 'x'

Given $\frac{2}{3}$ of a number is 10

$\begin{aligned} \frac{2}{3} \times x &=10 \\ x &=\frac{50 \times 3}{2} \\ x &=15 \end{aligned}$

The number x = 15

∴ Now 1.75 times of number = $=1.75 \times 15$

$=\frac{135}{100} \times 15$

$=\frac{2625}{100}$

=26.25


 EXERCISE:2.7



Question 1 

i) $1 \frac{1}{9}=1+\frac{1}{9}=\frac{9+1}{9}=\frac{10}{9}$

$3 \frac{1}{2}=3+\frac{1}{2}=\frac{6+1}{2}=\frac{7}{2}$

$\frac{3}{5}$ if $1 \frac{1}{9}=\frac{3}{5} \times \frac{10}{9}=\frac{2}{3}$

So $\frac{2}{3}+\frac{7}{2}=\frac{2 x^{2}+7 \times 3}{6}=\frac{4+21}{6}=\frac{25}{6}=4 \frac{1}{6}$


ii)$2 \frac{3}{8}=2+\frac{3}{8}=\frac{16+3}{8}=\frac{19}{8}$

$\frac{4}{5} \times 2 \frac{3}{8}=\frac{4}{5} \times \frac{19}{82}=\frac{19}{10}$

$2 \times \frac{3}{5}=\frac{6}{5} \times \frac{2}{2}=\frac{12}{10}$

$50, \frac{19}{10}-\frac{12}{10}=\frac{19-12}{10}=\frac{7}{10}$


iii) $\frac{4}{5}+2=\frac{4+2 \times 5}{5}=\frac{4+10}{5}=\frac{14}{5}$

$3-\frac{2}{3}=\frac{3 \times 3-2}{3}=\frac{9-2}{3}=\frac{7}{3}$

So, $\frac{14}{5} \times \frac{7}{3}=\frac{98}{15}=6 \frac{8}{15}$


Question 2

i) $2 \frac{2}{3}=2+\frac{2}{7}=\frac{2 x-2}{7}=\frac{16}{7} .$

$\frac{1}{4}$ of $2 \frac{2}{7}=\frac{1}{4} \times \frac{16}{7}=\frac{4}{7} .$

So, $\frac{4}{7} \div \frac{3}{5}=\frac{4 / 7}{3 / 5}$

$=\frac{4}{7} \times \frac{5}{3}=\frac{20}{21} .$


ii) $\frac{3}{7} \div \frac{1}{2}=\frac{3 / 7}{1 / 2}=\frac{3}{7} \times 2=\frac{6}{7}$

So $\frac{6}{7} \div \frac{7}{8}=\frac{6 / 7}{7 / 8}=\frac{6}{7} \times \frac{8}{7}=\frac{48}{49} .$


iii) $\frac{5}{8} \div \frac{3}{4}=\frac{5 / 8}{3 / 4}=\frac{5}{8} \times \frac{4}{3}=\frac{5}{6}$

so, $\frac{5}{6}+\frac{2}{5}=\frac{5 \times 5+2 \times 6}{30}=\frac{25+12}{30}=\frac{37}{30}=1$

$ \frac{7}{30} .$


Question 3

i) $4 \frac{1}{2}=4+\frac{1}{2}=\frac{4 \times 2+1}{2}=\frac{9}{2}$

$2 \frac{2}{3}=2+\frac{2}{3}=\frac{2 \times 3+2}{3}=\frac{8}{3}$

$5 \frac{1}{2}=5+\frac{1}{2}=\frac{5 \times 2+1}{2}=\frac{11}{2}$

$3 \frac{5}{6}=3+\frac{5}{6}=\frac{3 \times 6+5}{6}=\frac{18+5}{6}=\frac{23}{6}$

$\left(4 \frac{1}{2}-2 \frac{2}{3}\right)=\frac{9}{2}-\frac{8}{3}=\frac{9 \times 3-8 \times {2}}{6}=\frac{27-16}{6}=\frac{11}{6}$

$5 \frac{1}{2}$ of $3 \frac{5}{6}=\frac{11}{2} \times \frac{23}{6}=\frac{253}{12} .$

So, therefore $\frac{11}{6} \div \frac{7}{12}+\frac{253}{12}$

$=\frac{11}{6} \times \frac{12}{3}+\frac{253}{12}$

$=\frac{22}{7}+\frac{253}{12}$

$=\frac{22 \times 12+253 \times 7}{84}$

$=\frac{2075}{84}$

$=24 \frac{19}{84}$


ii)$5 \frac{1}{3}=5+\frac{1}{3}=\frac{5 x]+1}{3}=\frac{16}{3} .$

=$2 \frac{1}{2}=2+\frac{1}{2} \cdot \frac{2 x^{2}+1}{2}=\frac{5}{2} .$

=$\left(\frac{1}{2}+\frac{1}{3}\right) \div\left(\frac{1}{4}-\frac{1}{6}\right)-\left[8-\left\{5 \frac{1}{3}-\left(3-2 \frac{1}{2}\right)\right\}\right]$

$=\left(\frac{3+2}{6}\right) \div\left(\frac{3-2}{12}\right)-\left[8-\left\{\frac{16}{3}-\left(3-\frac{5}{2}\right)\right\}\right]$

$=\left(\frac{5}{6}\right) \div\left(\frac{1}{12}\right)-\left[8-\left\{\frac{16}{3}-\left(\frac{6-5}{2}\right)\right\}\right]$

$\left(4 \frac{1}{2}-2 \frac{2}{3}\right)=\frac{9}{2}-\frac{8}{3}=\frac{9 \times 3-8 x^{2}}{6}=\frac{27-16}{6}=\frac{11}{6} .$

$5 \frac{1}{2}$ of $3 \frac{5}{6}=\frac{11}{2} \times \frac{23}{6}=\frac{253}{12} .$

So, therefore $\frac{11}{6} \div \frac{7}{12}+\frac{253}{12}$

$=\frac{11}{8} \times \frac{12}{7}+\frac{253}{12}$

$\frac{22}{7}+\frac{253}{12}$

$=\frac{22 \times 12+253 \times 7}{84}$

$=\frac{2075}{84}$

$=24 \frac{19}{84} .$


iii) $5 \frac{1}{3}=5+\frac{1}{3}=\frac{5 \times 3+1}{3}=\frac{16}{3}$

$2 \frac{1}{2}=2+\frac{1}{2} \cdot \frac{2 \times 2+1}{2}=\frac{5}{2}$

=$\left(\frac{1}{2}+\frac{1}{3}\right) \div\left(\frac{1}{4}-\frac{1}{6}\right)-\left[8-\left\{5 \frac{1}{3}-\left(3-2 \frac{1}{2}\right)\right\}\right] .$

$=\left(\frac{3+2}{6}\right) \div\left(\frac{3-2}{12}\right)-\left[8-\left\{\frac{16}{3}-\left(3-\frac{5}{2}\right)\right\}\right]$

$=\left(\frac{5}{6}\right) \div\left(\frac{1}{12}\right)-\left[8-\left\{\frac{16}{3}-\left(\frac{6-5}{2}\right)\right]\right]$

$=\frac{516}{1 / 12}-\left[8-\left(\frac{16}{3}-\frac{1}{2}\right)\right]$

$=\frac{5}{6} \times 1^{2}-\left[8-\left(\frac{16 \times 2-3 \times 1}{6}\right)\right]$
$=10-\left[8-\left(\frac{32-3}{6}\right)\right]$

$=10-\left[8-\frac{29}{6}\right]$

$10-\left[\frac{8 \times 6-29}{6}\right]$

$=10-\frac{48-29}{6}$

$=10-\frac{19}{6}$

$=\frac{60-19}{6}$

$=\frac{41}{6}=6 \frac{5}{6} .$


Question 4

(i) 
$\begin{aligned} & 2.3-[1.89-\{3.6-(2.7-0.8-0.03)\}] \\ & 2.3-[1.89-\{3.6-(2.7-0.77)\}] \\ &=2.3-[1.89-\{3.6-1.93\}] \\=& 2.3-[1.89-1.67] \\=& 2.3-0.22 \\=& 2.08 \end{aligned}$


ii) $4.5-\frac{1}{2}$ of $(7.6-3.5)+2.3 \times 4.05$

$=4.5-\frac{1}{2} \times(4.1)+2.3 \times 4.05$

$=4.5-\frac{4.1}{2}+9.315$

$=4.5+9.315-2.05$

$=13.815-2.05$

$=11.765$


Question 5

i) $2 \frac{1}{2}=\frac{5}{2}$

$2 \frac{1}{2}+\frac{1}{5}=\frac{5}{2}+\frac{1}{5}$

$=\frac{-5 \times 5+1 \times 2}{10}=\frac{27}{10} .$

$2 \frac{1}{2} \div \frac{1}{5}=\frac{5}{2} \div \frac{1}{5}$

$\frac{5}{2} \times 5=\frac{25}{2}$

So, $\frac{2 \frac{1}{2}+\frac{1}{5}}{2 \frac{1}{2} \div \frac{1}{5}}=\frac{27 / 10}{25 / 2}$

$=\frac{27}{10} \times \frac{2}{25}$

$=\frac{27}{125} .$


(ii) $\frac{3.5 \times 0.24}{0.21}-0.037$

$3 \cdot 5=\frac{35}{10}=\frac{7}{2} .$

$0.24= \frac{24}{100}=\frac{6}{25}$

$0 .21=\frac{21}{100}$

$=\frac{\frac{7}{2} \times \frac{6}{25}}{\frac{21}{100}}-\frac{37}{1000}$

$=\frac{7}{2} \times \frac{6}{25} \times \frac{100}{21}-\frac{37}{1000}$

$=4-\frac{37}{1000}$

$=4-0.037$

$=3.963 .$











































































































































































































































































































































































































































































































































































0 comments:

Post a Comment