Excercise: 9.1
Question 1
(i)
$\begin{aligned} 2(3-2 x) &=13 \\ 6-4 x &=13 \\-4 x &=13-6 \\-4 x &=7 \\ x=-7 / 4 \end{aligned}$
ii) $\begin{aligned} \frac{3}{5} y-2=& 7 / 10 \\ \frac{3}{5} y &=7 / 10+2 \\ \frac{3}{5} y &=\frac{27}{10} \\ y &=\frac{27}{10} \times \frac{5}{3}=9 / 2 \end{aligned}$
= $9 / 2$
Question 2
i) $\frac{x}{2}=5+x / 3$
$\frac{x}{2}-\frac{x}{3}=5$
$\frac{3 x-2 x}{6}=5$
$x=5 \times 6$
$x=30$
ii) $2(x-3 / 2)=11$
$2 x-2\times 3 / 2=11$
$2 x-3=11$
$2 x=3+11$
$x=14 /2$
$x=7$
Question 3
i) $7(x-2)=2(2 x-4)$
$7 x-14=4 x-8$
$7 x-4 x=14-8$
$3 x=6$
$x= 6 / 2$
x = 2
ii)$21-3(x-7)=x+20$
$21-3 x+21=x+20$
$4 x=42-20$
$4 x=\frac{22}{11}$
x = 22\4
x = 11\2
Question 4
i) $3 x-\frac{1}{3}=2(x-1 / 2)+5$
$\frac{9 x-1}{3}=\frac{2(2 x-1)}{2}+5$
$\frac{9 x-1}{3}=2 x-1+5$
$\frac{9 x-1}{3}=2 x+4$
$9 x-1=6 x+12$
$9 x-6 x=12+1$
$3 x=13$
$x=13 / 3$
ii) $\frac{2 m}{3}-\frac{m}{5}=7$
$\frac{(2m) \times 5-3 m}{15}=7$
$\frac{10 m-3 m}{15}=7$
$\frac{7 m}{15}=7$
$m=7 \times \frac{15}{7}$
$m=15$
Question 5
i) $\frac{x+1}{5}-\frac{x-7}{2}=1$
$\frac{2(x+1)-5(x-7)}{10}=1$
$2 x+2-5 x+35=10$
$-3 x=10-35-2$
$-3 x=-27$
$x=\frac{-27}{-3}$
$x=9$
ii)
$\begin{aligned} \frac{3 p-2}{7}-\frac{p-2}{4}=2 & \\ \frac{4(3 p-2)-7(p-2)}{7 \times 4}=2 & \\ \frac{12 p-8-7 p+14}{28} &=2 \\ 5 p+6 &=56 \\ 5 p &=56-6 \\ 5 p &=50 \\ p &=50 / 5 \end{aligned}$
P = 10
Question 6
i) $\frac{1}{2}(x+5)-\frac{1}{3}(x-2)=4$
$\frac{3(x+5)-2(x-2)}{3 \times 2}=4$
$\frac{x+2 x+4=4 \times 6}{x+19}=24$
$x+19=24$
$x=24-19$
$x=5$
ii) $\frac{2 x-3}{1}-\frac{x-5}{2}=\frac{x}{6}$
$\frac{2(2 x-3)-6(x-5)}{6 \times 2}=\frac{x}{6}$
$4 x-6-6 x+30=$ $\frac{x}{6} \times {12}$
$-2 x+24 .=2 x$
$4 x=24$
$x=24 / 4$
x = 6
Question 7
i) $\frac{x-4}{7}-\frac{x+4}{5}=\frac{x+3}{7}$
$\frac{5(x-4)-7(x+4)}{7 \times 5}=\frac{x+3}{7}$
$5 x-20-7 x-28=\left(\frac{x+3}{7}\right) 35$
$\begin{aligned}-2 x-48 &=5 x+15 \\-48-15 &=5 x+2 x \\ 7 x &=-63 \\ x &=\frac{-63}{7} \\ x &=-9 \end{aligned}$
ii) $\frac{x-1}{5}+\frac{x-2}{2}=\frac{x}{3}+1$
$\frac{2(x-1)+5(x-2)}{5 \times 2}=\frac{x+3}{3}$
$\frac{2 x-2+5 x-10}{10}=\frac{x+3}{3}$
$\frac{7 x-12}{10}=\frac{x+3}{3}$
$3(7 x-12)=10(x+3)$
$21 x-36=10 x+30$
$11 x=66$
$x=\frac{66}{11}$
$x=6$
Question 8
i)
$\begin{aligned} y+1.2 y &=4.4 \\ 2.2 y &=4.4 \\ y &=\frac{4.4}{2.2} \\ y &=2 \end{aligned}$
ii) $15 \%$ of $x=21$
$\frac{15}{100} \times x=21$
$x=\frac{21 \times 100}{15}$
x = 140
Question 9
i) $2 p+20 \%$ of $(2 p-1)=7$
$2 p+\frac{20}{100}(2 p-1)=7$
$2 P+\frac{1}{5}(2 p-1)=7$
$5 \times 2 P+2 P-1=35$
$10 P+2 P=1+35$
$\begin{aligned} 12 p &=36 \\ p &=36 / 12 \\ p=3 \end{aligned}$
ii) $3(2 x-1)+25 \%$ of $x=97$
$3(2 x-1)+\frac{95}{100} \times x=97$
$6 x-3+\frac{1}{4} \times x=97$
$\frac{4(6 x-3)+x}{4}=97$
$24 x-12+x=97 \times 4$
$25 x=388+12$
$25 x=400$
$x=\frac{400}{25}$
x= 16
Question 10
$x^{4}-3 x^{3}-p x-5=2.3 .$
Given $x=-2$
$(-2)^{4}-3(-2)^{3}-p(-2)-5=23$
$16-3(-8)+2 p-5=23$
$16+24+2 p-5=23$
$2 P=23-35$
$2 p=-12$
p = -12\2
p = -6
Excercise: 9.2
Question 1
Let the required number = x
5 times the number = 5x
7 added to 5 times the number = 5x + 7
According to the problem
$5 x+7=57$
$5 x=50$
$x=50 / 5$
$x=10$
Question 2
Let the required number = x
$\frac{1}{4}^{\text {th }}$ of the number is 3 more than 7
$\frac{1}{4} x=7+3$
$\frac{1}{4} x=10$
$\quad x=40$
Question 3
Let required number = x
A number is greater than 15 and it is Less than 51 then
x - 15 = 51 -x
2x = 66
x = 33
Question 4
Let required number = x
$\frac{1}{2}$ is subtracted from a number = $x-1 / 2$
Multiplied by 4 = $4(x-1 / 2)$
Given result = 5
$4(x-1 / 2)=5$
$24\times\left(\frac{2 x-1}{y}\right)=5$
$4 x-2=5$
$4 x=5+2$
$4 x=7$
$x=7 / 4$
Question 5
Let the required number = x , 80- x
The greater number exceeds twice the smaller by 11 is
$x=2(80-x)+11$
$x=160-2 x+11$
$3 x=171$
$x=171 / 3$
x=57 And other number is 80 - 57 = 23
Question 6
Three consecutire odd natureal number are
$2 x+1, \quad 2 x+3, \quad 2 x+5$
Given sum is = 87
$2 x+2 x+3+2 x+5=87$
$6 x=87-9$
$6 x=78$
$x=78 / 6$
x = 13
Required number are 27, 29 , 31
Question 7
Let number of boys = x
Number of girls = $\frac{2}{5} x$.
Total no. of students = 35
$x+\frac{2}{5} x=35$'
$5 x+2 x=35 \times 5$
$7 x=35 \times 5$''
$x=\frac{35 \times 5}{7}$
$x=25$
Number of girls in the class is = $\frac{2}{5} \times 25$ = 10
Question 8
Let number of chairs = x
A house wife purchased certain number of chairs and two tables = 2800
$(250 \times x)+(2 \times 400)=2800$
$(250 \times x)+(800)=2800$
$250 \times x=2800-800$
$x=\frac{2000}{250}$
$x=8$
Number of chairs purchased = 8
Question 9
Let Aparna's monthly salary= x
Then over time payment = x - 16560
According to the problem
$\begin{aligned} x+x-16560 &=27840 \\ & 2 x=44,400 \\ &=\frac{44,400}{2} . \\ x=& 22,200 \end{aligned}$
Aparna monthly salary= 22,200
Question 10
Let 5 rupee coins = x
2 rupees coins = 80 -x
According to the problem total amount is 232 rupees
$\begin{aligned} 5 x+2(80-x) &=232 \\ 5 x+160-2 x &=232 \\ 3 x &=232-160 \\ 3 x &=72 \\ x=& 72 / 3 \\ x &=24 \end{aligned}$
Number of 5 rupees coins = 24
Question 11
Let purse contains 10 rupees notes = x
50 rupees notes is one less = x - 1
According to the problem total amount in purse is = 550
$10 x+50(x-1)=550$
$10 x+50 x-50=550$
$60 x=600$
$x=600 / 60$
$x=10$
Number of 50 rupees note = 10-1 = 9
Question 12
Let present age = x
After 12 years = x + 12
3 Times as old was 4 years ago
$x+12=3(x-4)$
$x+12=3 x-12$
$2 x=24$
$x=24 / 2$
$x=12$
Present age is 12
Question 13
Given sides of isosceles triangle are
$3 x-1, \quad 2 x+2,2 x$
Two equal sides are
$3 x-1=2 x+2$
$3 x-2 x=2+1$
$x=3$
perimeter of triangle $=3 x-1+2 x+2+2 x$
$=7 x+1$
$=7(3)+1$
$=22$
Question 14
Let breadth = x
Length of the rectanangular = 3x - 6
According to the problem perimeter is = 148
$\begin{aligned} 2(x+3 x-6) &=148 \\ 2(4 x-6) &=148 \\ 8 x-12 &=148 \\ 8 x &=160 \\ x &=80 \end{aligned}$
Length 54 , breadth = 20
Question 15
Difference of each angle = 20 '
Let the angles be = x and x + 20
Sum of the complementary angle is 90'
$x+x+20=90$
$2 x=90-20$
$2 x=70$
$x=35$
One angles , 35' other angle is (35+ 20) = 5
Excercise: 9.3
Question 1
i) x <-2
Replacement sent {$-5,-3,-1,0,1,3,4$}
Solutin set { -5, -3}
ii) x>1
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{3,4\}$
iii) $x \geqslant-1$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{-1,0,1,3,4\}$
iv) $-5<x<3$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{-3,-1,0,1\}$
v) $-3 \leq x<4$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{-3,-1,0,1,3\}$
vi) $0 \leq x<7$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
solution set $\{0,1,3,4\}$
Question 2
(i) $\begin{aligned} & x \leq 3 \\ & \text { Solution set }=\{1,2,3\} \end{aligned}$
(Diagram should be added)
ii) $x<4$
Solution set $=\{0,1,2,3\}$
(Diagram should be added)
iii) $-2 \leq x<4$
Solution set : $\{-2,-1,0,1,2,3\}$
(Diagram should be added)
iv) $-3 \leqslant x<2$
Solution set $=\{-3,-2,-1,0,1\}$
(Diagram should be added)
Question 3
(i)
$\begin{aligned} 4-x>-2 & \\-4+4-x &>-2+(-4) \\-x &>-6 \\ x &<6 \end{aligned}$ Add both side $(-4)$
0 comments:
Post a Comment