asdasdasdasdasdasda
Thursday, May 27, 2021
Wednesday, May 26, 2021
ML AGGARWAL CLASS 7 Chapter 9 Linear Equations and Inequalities Excercise 9.1
Excercise: 9.1
Question 1
(i)
$\begin{aligned} 2(3-2 x) &=13 \\ 6-4 x &=13 \\-4 x &=13-6 \\-4 x &=7 \\ x=-7 / 4 \end{aligned}$
ii) $\begin{aligned} \frac{3}{5} y-2=& 7 / 10 \\ \frac{3}{5} y &=7 / 10+2 \\ \frac{3}{5} y &=\frac{27}{10} \\ y &=\frac{27}{10} \times \frac{5}{3}=9 / 2 \end{aligned}$
= $9 / 2$
Question 2
i) $\frac{x}{2}=5+x / 3$
$\frac{x}{2}-\frac{x}{3}=5$
$\frac{3 x-2 x}{6}=5$
$x=5 \times 6$
$x=30$
ii) $2(x-3 / 2)=11$
$2 x-2\times 3 / 2=11$
$2 x-3=11$
$2 x=3+11$
$x=14 /2$
$x=7$
Question 3
i) $7(x-2)=2(2 x-4)$
$7 x-14=4 x-8$
$7 x-4 x=14-8$
$3 x=6$
$x= 6 / 2$
x = 2
ii)$21-3(x-7)=x+20$
$21-3 x+21=x+20$
$4 x=42-20$
$4 x=\frac{22}{11}$
x = 22\4
x = 11\2
Question 4
i) $3 x-\frac{1}{3}=2(x-1 / 2)+5$
$\frac{9 x-1}{3}=\frac{2(2 x-1)}{2}+5$
$\frac{9 x-1}{3}=2 x-1+5$
$\frac{9 x-1}{3}=2 x+4$
$9 x-1=6 x+12$
$9 x-6 x=12+1$
$3 x=13$
$x=13 / 3$
ii) $\frac{2 m}{3}-\frac{m}{5}=7$
$\frac{(2m) \times 5-3 m}{15}=7$
$\frac{10 m-3 m}{15}=7$
$\frac{7 m}{15}=7$
$m=7 \times \frac{15}{7}$
$m=15$
Question 5
i) $\frac{x+1}{5}-\frac{x-7}{2}=1$
$\frac{2(x+1)-5(x-7)}{10}=1$
$2 x+2-5 x+35=10$
$-3 x=10-35-2$
$-3 x=-27$
$x=\frac{-27}{-3}$
$x=9$
ii)
$\begin{aligned} \frac{3 p-2}{7}-\frac{p-2}{4}=2 & \\ \frac{4(3 p-2)-7(p-2)}{7 \times 4}=2 & \\ \frac{12 p-8-7 p+14}{28} &=2 \\ 5 p+6 &=56 \\ 5 p &=56-6 \\ 5 p &=50 \\ p &=50 / 5 \end{aligned}$
P = 10
Question 6
i) $\frac{1}{2}(x+5)-\frac{1}{3}(x-2)=4$
$\frac{3(x+5)-2(x-2)}{3 \times 2}=4$
$\frac{x+2 x+4=4 \times 6}{x+19}=24$
$x+19=24$
$x=24-19$
$x=5$
ii) $\frac{2 x-3}{1}-\frac{x-5}{2}=\frac{x}{6}$
$\frac{2(2 x-3)-6(x-5)}{6 \times 2}=\frac{x}{6}$
$4 x-6-6 x+30=$ $\frac{x}{6} \times {12}$
$-2 x+24 .=2 x$
$4 x=24$
$x=24 / 4$
x = 6
Question 7
i) $\frac{x-4}{7}-\frac{x+4}{5}=\frac{x+3}{7}$
$\frac{5(x-4)-7(x+4)}{7 \times 5}=\frac{x+3}{7}$
$5 x-20-7 x-28=\left(\frac{x+3}{7}\right) 35$
$\begin{aligned}-2 x-48 &=5 x+15 \\-48-15 &=5 x+2 x \\ 7 x &=-63 \\ x &=\frac{-63}{7} \\ x &=-9 \end{aligned}$
ii) $\frac{x-1}{5}+\frac{x-2}{2}=\frac{x}{3}+1$
$\frac{2(x-1)+5(x-2)}{5 \times 2}=\frac{x+3}{3}$
$\frac{2 x-2+5 x-10}{10}=\frac{x+3}{3}$
$\frac{7 x-12}{10}=\frac{x+3}{3}$
$3(7 x-12)=10(x+3)$
$21 x-36=10 x+30$
$11 x=66$
$x=\frac{66}{11}$
$x=6$
Question 8
i)
$\begin{aligned} y+1.2 y &=4.4 \\ 2.2 y &=4.4 \\ y &=\frac{4.4}{2.2} \\ y &=2 \end{aligned}$
ii) $15 \%$ of $x=21$
$\frac{15}{100} \times x=21$
$x=\frac{21 \times 100}{15}$
x = 140
Question 9
i) $2 p+20 \%$ of $(2 p-1)=7$
$2 p+\frac{20}{100}(2 p-1)=7$
$2 P+\frac{1}{5}(2 p-1)=7$
$5 \times 2 P+2 P-1=35$
$10 P+2 P=1+35$
$\begin{aligned} 12 p &=36 \\ p &=36 / 12 \\ p=3 \end{aligned}$
ii) $3(2 x-1)+25 \%$ of $x=97$
$3(2 x-1)+\frac{95}{100} \times x=97$
$6 x-3+\frac{1}{4} \times x=97$
$\frac{4(6 x-3)+x}{4}=97$
$24 x-12+x=97 \times 4$
$25 x=388+12$
$25 x=400$
$x=\frac{400}{25}$
x= 16
Question 10
$x^{4}-3 x^{3}-p x-5=2.3 .$
Given $x=-2$
$(-2)^{4}-3(-2)^{3}-p(-2)-5=23$
$16-3(-8)+2 p-5=23$
$16+24+2 p-5=23$
$2 P=23-35$
$2 p=-12$
p = -12\2
p = -6
Excercise: 9.2
Question 1
Let the required number = x
5 times the number = 5x
7 added to 5 times the number = 5x + 7
According to the problem
$5 x+7=57$
$5 x=50$
$x=50 / 5$
$x=10$
Question 2
Let the required number = x
$\frac{1}{4}^{\text {th }}$ of the number is 3 more than 7
$\frac{1}{4} x=7+3$
$\frac{1}{4} x=10$
$\quad x=40$
Question 3
Let required number = x
A number is greater than 15 and it is Less than 51 then
x - 15 = 51 -x
2x = 66
x = 33
Question 4
Let required number = x
$\frac{1}{2}$ is subtracted from a number = $x-1 / 2$
Multiplied by 4 = $4(x-1 / 2)$
Given result = 5
$4(x-1 / 2)=5$
$24\times\left(\frac{2 x-1}{y}\right)=5$
$4 x-2=5$
$4 x=5+2$
$4 x=7$
$x=7 / 4$
Question 5
Let the required number = x , 80- x
The greater number exceeds twice the smaller by 11 is
$x=2(80-x)+11$
$x=160-2 x+11$
$3 x=171$
$x=171 / 3$
x=57 And other number is 80 - 57 = 23
Question 6
Three consecutire odd natureal number are
$2 x+1, \quad 2 x+3, \quad 2 x+5$
Given sum is = 87
$2 x+2 x+3+2 x+5=87$
$6 x=87-9$
$6 x=78$
$x=78 / 6$
x = 13
Required number are 27, 29 , 31
Question 7
Let number of boys = x
Number of girls = $\frac{2}{5} x$.
Total no. of students = 35
$x+\frac{2}{5} x=35$'
$5 x+2 x=35 \times 5$
$7 x=35 \times 5$''
$x=\frac{35 \times 5}{7}$
$x=25$
Number of girls in the class is = $\frac{2}{5} \times 25$ = 10
Question 8
Let number of chairs = x
A house wife purchased certain number of chairs and two tables = 2800
$(250 \times x)+(2 \times 400)=2800$
$(250 \times x)+(800)=2800$
$250 \times x=2800-800$
$x=\frac{2000}{250}$
$x=8$
Number of chairs purchased = 8
Question 9
Let Aparna's monthly salary= x
Then over time payment = x - 16560
According to the problem
$\begin{aligned} x+x-16560 &=27840 \\ & 2 x=44,400 \\ &=\frac{44,400}{2} . \\ x=& 22,200 \end{aligned}$
Aparna monthly salary= 22,200
Question 10
Let 5 rupee coins = x
2 rupees coins = 80 -x
According to the problem total amount is 232 rupees
$\begin{aligned} 5 x+2(80-x) &=232 \\ 5 x+160-2 x &=232 \\ 3 x &=232-160 \\ 3 x &=72 \\ x=& 72 / 3 \\ x &=24 \end{aligned}$
Number of 5 rupees coins = 24
Question 11
Let purse contains 10 rupees notes = x
50 rupees notes is one less = x - 1
According to the problem total amount in purse is = 550
$10 x+50(x-1)=550$
$10 x+50 x-50=550$
$60 x=600$
$x=600 / 60$
$x=10$
Number of 50 rupees note = 10-1 = 9
Question 12
Let present age = x
After 12 years = x + 12
3 Times as old was 4 years ago
$x+12=3(x-4)$
$x+12=3 x-12$
$2 x=24$
$x=24 / 2$
$x=12$
Present age is 12
Question 13
Given sides of isosceles triangle are
$3 x-1, \quad 2 x+2,2 x$
Two equal sides are
$3 x-1=2 x+2$
$3 x-2 x=2+1$
$x=3$
perimeter of triangle $=3 x-1+2 x+2+2 x$
$=7 x+1$
$=7(3)+1$
$=22$
Question 14
Let breadth = x
Length of the rectanangular = 3x - 6
According to the problem perimeter is = 148
$\begin{aligned} 2(x+3 x-6) &=148 \\ 2(4 x-6) &=148 \\ 8 x-12 &=148 \\ 8 x &=160 \\ x &=80 \end{aligned}$
Length 54 , breadth = 20
Question 15
Difference of each angle = 20 '
Let the angles be = x and x + 20
Sum of the complementary angle is 90'
$x+x+20=90$
$2 x=90-20$
$2 x=70$
$x=35$
One angles , 35' other angle is (35+ 20) = 5
Excercise: 9.3
Question 1
i) x <-2
Replacement sent {$-5,-3,-1,0,1,3,4$}
Solutin set { -5, -3}
ii) x>1
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{3,4\}$
iii) $x \geqslant-1$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{-1,0,1,3,4\}$
iv) $-5<x<3$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{-3,-1,0,1\}$
v) $-3 \leq x<4$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
Solution set $\{-3,-1,0,1,3\}$
vi) $0 \leq x<7$
Replacement set $\{-5,-3,-1,0,1,3,4\}$
solution set $\{0,1,3,4\}$
Question 2
(i) $\begin{aligned} & x \leq 3 \\ & \text { Solution set }=\{1,2,3\} \end{aligned}$
(Diagram should be added)
ii) $x<4$
Solution set $=\{0,1,2,3\}$
(Diagram should be added)
iii) $-2 \leq x<4$
Solution set : $\{-2,-1,0,1,2,3\}$
(Diagram should be added)
iv) $-3 \leqslant x<2$
Solution set $=\{-3,-2,-1,0,1\}$
(Diagram should be added)
Question 3
(i)
$\begin{aligned} 4-x>-2 & \\-4+4-x &>-2+(-4) \\-x &>-6 \\ x &<6 \end{aligned}$ Add both side $(-4)$
Saturday, May 22, 2021
ML AGGARWAL CLASS 7 Chapter 8 Algebraic Expressions Excercise =8.1
Excercise =8.1
Question 1
(i) $3 x+6$
(ii) $\quad 13-5 x$
(ii) $\quad x^{2}+y^{2}$
(iv) $\quad 3 p q+7$
(v) $\quad x^{2}-3 x$
ii) $\quad mn-(m+n)$
Question 2
A taxi charges = 9\km
fixed charges = 80
Taxo fixed for x km is
9x + 50
Question 3
(i) $\quad 5 a-3 b+c$
(ii. $\quad x^{2}-5 x+6 .$
(iii) $x^{2} y+x y-x y^{2}$
Question 4
(i) $3,-7 x$
ii. $2,-5 a, \frac{3}{2} b$
iii, $3 x^{5}, 4 y^{3},-7 x y^{2}, 3$
Question 5
i) -4x + 5y
Term - 4x , 5y
Factor -4x 5y
ii) $\quad x y+2 x^{2} y^{2}$
Term $: x y \quad, \quad 2 x^{2} y^{2}$
'
factor: $x, y \quad 2, x, x, y, y$
iii) $1.2 a b-2.4 b+3.6 a$
Term $: 1.2 a b \quad-2.4 b \quad 3.6 a$
farror : $1.2, a, b \quad-2.4, b \quad 3.6, a$
Question 6
i) $8 x+3 y^{2}$
(to be added)
ii)$y-y^{3}$
(to be added)
iii) $5 x y^{2}+7 x^{2} y$
(to be added)
iv) $-a b+2 b^{2}-3 a^{2}$
(to be added)
Question 7
i) $-7$
ii) $-2$
iii) 6
iv) $2 / 3$
Question 8
i) $-4 b$
ii) $5 y_{2}$
iii) $-1$
iv) $-3 x y$
Question 9
i) $-y^{2} z^{3}$
ii) $72^{3}$
(iii) $-7 y z^{2}$
iv) $-x y z$
Question 10
i) Non - constant term = -7x
Numerical coefficients = -7
ii) $1+2 x-3 x^{2}$
Non-constant term $2 x,-3 x^{2}$
Numerical coefficients $=2,-3$
iii) 1.2a + 0.8 b
Non- constant term = 1.2a , 0.8b
Numerical coefficient = 1.2, 0.8
Question 11
(i) $13 y^{2}-8 x y$
$-8 x y$
coefficient of $x=-8 y$
ii) 7x - $x y^{2}$
$7 x,-x y^{2}$
Coefficient of x = 7 $-y^{2}$
(iii)
$\begin{aligned} 5 &-7 x y z+4 x^{2} y \\ &-7 x y z, 4 x^{2} y \end{aligned}$
Coefficient of x = -7xyz , 4xy
Question 12
i)
$\begin{aligned} 8-x y^{2} \\-& x y^{2} \end{aligned}$
Coefficient of $y^{2}=-x$
ii)
$\begin{aligned} 5 y^{2} &+7 x-3 x y^{2} \\ & 5 y^{2},-3 x y^{2} \end{aligned}$
Coefficient of $y^{2}=5,-3 x$
iii)
$\begin{aligned} 2 x^{2} y &-15 x y^{2}+7 y^{2} \\-& 15 x y^{2}, 7 y^{2} \end{aligned}$
Coefficient of $y^{2}=-15 x^{2}, 7$
Question 13
i) 4y-72 binomial
ii) $-5 x y^{2}$ monomial
iii) $x+y-x y \quad$ trinomial
iv) $a b^{2}-5 b-3 a$ trinomial
v) $4 p^{2} q-5 p q^{2} \quad$ binomial
(vi) 2017 monomial
(vii) $1+x+x^{2}$ trinamial
(viii) $5 x^{2}-7+3 x+4$ trinomial
Question 14
i) $-7 x, 5 / 2^{x}$ Like term
ii) $-29 x,-29 y$ unlike term
iii) $2 \mathrm{xy}, 2 \mathrm{xy} 2$ unlike term
iv) $4 m^{2} p, 4 m p^{2}$ unlike term
v) $\quad 12 x z, 12 x^{2} z^{2}$ unlike term
vi) $-59 q, 79 p$ like term
Question 15
i) $x^{2} y,-2 x^{2} y$
ii) $3 a^{2} b,-6 x^{2} b, 2 a b c$, 4abc
iii) $10 p q,-7 p q, 78 q p .$
$7P,2405 P .$
$8 q,-100 q$
$-p^{2} q^{2}, 12 q^{2} p^{2}$
$-23,41$
$-5 p^{2}, 701 p^{2}$
$13 p^{2} q, q p^{2}$
Question 16
ii, 8
ii, 1
iii, 0
iv, 2
Question 17
$\begin{array}{ll}\text { (i) } & 3 \\ \text {(ii)} & 4 \\ \text ({iii)} 5\end{array}$
Question 18
i) True
ii) False
iii) False
iv) False
v) True
vi) False
vii) False
Excercise =8.2
Question 1
i)
$\begin{aligned} 7 x,-3 x & \\ 7 x-3 x &=4 x \end{aligned}$
ii) $6 x,-11 x$
$6 x-11 x=-5 x$
iii) $5 x^{2},-9 x^{2}$
$5 x^{2}-9 x^{2}=-4 x^{2}$
iv) $3 a b^{2},-5 a b^{2}$
$3 a b^{2}-5 a b^{2}=-4 a b^{2}$
v) $\frac{1}{2} p q,-1 / 3 p q$
$=\frac{1}{2} p q-\frac{1}{3} p q$
$=\frac{3 p q-2 p q}{3 \times 2}$
$=\frac{p q}{6}$
vi)$5 x^{3} y,-\frac{2}{3} x^{3} y$
$=5 x^{3} y-\frac{2}{3} x^{3} y$
$=\frac{15 x^{3} y-2 x^{3} y}{3}$
$=\frac{13 x^{3} y}{3}$
Question 2
i)
$\begin{aligned} 3 x-5 x, 7 x & \\ 3 x-5 x+7 x=5 x \end{aligned}$
ii) 7xy, $2 x y$, $-8 x y$
=$27 x y+2 x y-8 x y$
=xy
iii) $-2 a b c, 3 a b c, a b c$
$-2 a b c+3 a b c+a b c=2 a b c$
iv) $3 m n,-5 m n, 8 m n,-4 m n$
$3 m n-5 m n+8 m n-4 m n=2 m n$
v) $2 x^{3}, 3 x^{3},-4 x^{3},-5 x^{3}$
$2 x^{3}+3 x^{3}-4 x^{3}-5 x^{3}$
$5 x^{3}-9 x^{3}=-4 x^{3}$
Question 3
i) $8 b-32$
ii) $8 m^{2}-11 m+10$
iii) $7 z^{3}+12 z^{2}-202$
iv) $8 x^{2} y+$ 8xy $^{2}-4 x^{2}-7 y^{2}$
v) p-q
vi) $\quad a+a b$
vii) $ \quad 4 y^{2}-3 y$
Question 4
i) $5 x y,-7 x y, 3 x^{2}$
=$5 x y-7 x y+3 x^{2}$
=$3 x^{2}-2 x y$
ii) $4 x^{2} y_{2}-3 x y^{2},-8 x y^{2}, 5 x^{2} y$
=$4 x^{2} y-3 x y^{2}-5 x y^{2}+5 x^{2} y$
=$9 x^{2} y-8 x y^{2}$
iii) $-7 m n+5,12 m n+12,8 m n-8,-2 m n-3$
=$-7 m n+5+18 m n+12+8 m n-8-2 m n-3$
=$11 m n-4$
iv) $a+b-3, \quad b-a+3, a-b+3$
=$a+b-3+b-a+3+a-b+3$
=$\quad a+b+3$
v) $14 x+10 y-12 x y-13, \quad 18-7 x-10 y+8 x y, 4 x y$
=$14 x+10 y-12 x y-13+18-7 x-10 y+8 x y+4 x y$
=$7 x+5$
vi) $5 m-7 n, \quad 3 n-4 m+2,2 m-3 m n-5$
=$5 m-7 n+3 n-4 m+2+2 m-3 m n-5$
=$3 m-4 n-3 m n-3$
vii)$7 a^{2}-5 a+2, \quad 3 a^{2}-7, \quad 2 a+a, \quad 1+2 a-5 a^{2}$
=$7 a^{2}-5 a+2+3 a^{2}-7+2 a+9+1+2 a-5 a^{2}$
=$5 a^{2}-a+5$
Question 5
i) $2 x^{2}+3 y^{2}-5 x y+5 x^{2}-y^{2}+6 x y-3 x^{2}$
=$x^{2}(2+3)+y^{2}(3-1)+x y(-5+6)$
=$4 x^{2}+2 y^{2}+x y$
ii) $3 x y^{2}-5 x^{2} y+7 x y-8 y^{2} x-4 x y+6 x^{2} y$
=$x y^{2}(3-8)+x^{2} y(-5+6)+x y(7-4)$
=$-5 x y^{2}+6 x^{2} y+3 x y$
iii) $5 x^{4}-7 x^{2}+8 x-1+3 x^{3}-9 x^{2}+7-3 x^{4}+11 x-2+8 x^{2}$
=$x^{4}(5-3)+x^{2}(-7-9+8)+x(8+11)+3 x^{3}-1+7-2$
=$2 x^{4}-8 x^{2}+19 x+3 x^{3}+4$
=$2 x^{4}+3 x^{3}-8 x^{2}+19 x+4$
Question 6
i) $y^{2}-\left(-5 y^{2}\right)$
$y^{2}+5 y^{2}=6 y^{2}$
ii) $-2 x y-(-7 x y)$
$-2 x y+7 x y$
$5 x y$
iii) $b(5-a)-a(b-5)$
$5 b-a b-a b+5 a$
$5 a+5 b-2 a b$
iv) $4 m^{2}-3 m n+8-\left(-m^{2}+5 m n\right)$
$4 m^{2}-3 m n+8+m^{2}-5 m n$
$5 m^{2}-8 m n+8$
v)$3 a b-2 a^{2}-2 b^{2}-\left(5 a^{2}-7 a b+5 b^{2}\right)$
$3 a b-2 a^{2}-2 b^{2}-5 a^{2}+7 a b-5 b^{2}$
$10 a b-7 a^{2}-7 b^{2}$
vi) $5 p^{2}+3 q^{2}-p q-\left(4 p q-5 q^{2}-3 p^{2}\right)$
$5 p^{2}+3 q^{2}-p q-4 p q+5 q^{2}+3 p^{2}$
$8 p^{2}+8 q^{2}-5 p q$
vii) $7 x^{2}-8 x y+3 y^{2}-5-\left(7 x y+5 x^{2}-7 y^{2}+3\right)$
$7 x^{2}-8 x y+3 y^{2}-5-7 x y-5 x^{2}+7 y^{2}-3$
$x^{2}(7-5)+x y(-8-7)+y^{2}(3+7)-8$
$2 x^{2}-15 x y+10 y^{2}-8$
viii) $\left(x^{4}-3 x^{3}-2 x^{2}+3\right)-\left(2 x^{4}-7 x^{2}+5 x+3\right)$
$x^{4}-3 x^{3}-2 x^{2}+3-2 x^{4}+7 x^{2}-5 x-3$
$x^{4}(1-2)-3 x^{3}+x^{2}(-2+7)-5 x$
$-x^{4}-3 x^{3}+5 x^{2}-5 x$
Question 7
Sum of ( 10p - r ) and 5P+ 2q is
$=10 p- r+5 p+2 q$
=$15 p+2 q-r$
$P-2 q+r$ Subtract from $15 p+2 q-r$
=$(15 p+2 q-r)-(p-2 q+r)$
=$15 p+2 q-r-p+2 q-r$
=$p(15-1)+q(2+2)+r(-1-1)$
=$14 p+4 q-2 r$
Question 8
Sum of $4+3 x$ and $5-4 x+2 x^{2}$
$2 x^{2}-4 x+5+4+3 x$
$2 x^{2}-x+9$
Sum of $3 x^{2}-5 x$ and $-x^{2}+2 x+5$
=$3 x^{2}-5 x+\left(-x^{2}+2 x+5\right)$
=$2 x^{2}-3 x+5$
$2 x^{2}-x+9$ is substracted from $2 x^{2}-3 x+5$
=$2 x^{2}-3 x+5-\left(2 x^{2}-x+9\right)$
=$2 x^{2}-3 x+5-2 x^{2}+x-9$
=$2x-4$
Question 9
Sum is $x^{2}+y^{2}+5 x y$
Subtract $x^{2}-y^{2}+2 x y$ from $x^{2}+y^{2}+5 x y$
$x^{2}+y^{2}+5 x y$
$x^{2}-y^{2}+2 x y$
$-$ $+$ $-$
---------------------------------
$2 y^{2}+3 x y$
Question 10
$-7 m n+2 m^{2}+3 n^{2}$
$2 m n+m^{2}+n^{2}$
$-$ $-$ $-$
------------------------------------
$-9 m n+m^{2}+2 n^{2}$
Question 11
The required
$y^{4}-12 y^{2}+y+14-\left(17 y^{3}+34 y^{2}-51 y+68\right)$
$y^{4}-17 y^{3}+y^{2}(-12-34)+y(1+51)+14-68$
$y^{4}-17 y^{3}-46 y^{2}+52 y-54$
Question 12
The required
$93 p^{2}-55 p+4-\left(13 p^{3}-5 p^{2}+17 p-90\right)$
$93 p^{2}-55 p+4-13 p^{3}+5 p^{2}-17 p+90$
$-13 p^{3}+98 p^{2}-72 p+94$
Question 13
The required expressions
$3 x^{2}-4 y^{2}+5 x y+20$
$-x^{2}-y^{2}+6 x y+20$
$+$ $+$ $-$ $-$
-------------------------------------
$4 x^{2}-2 y^{2}-x y$
Question 14
Sum of $2 y^{2}+3 y z,-y^{2}-y z-z^{2}, \quad y z+2 z^{2}$ is
$2 y^{2}+3 y z-y^{2}-y z-z^{2}+y z+2 z^{2}$
$y^{2}(2-1) 7 y z(3-1+1)+z^{2}(-1+2)$
$y^{2}+3 y z+z^{2}$
Excercise =8.3
Question 1
i. $3 m-5$
Given $m=2$
$\quad 3(2)-5=6-5=1$
ii) $9-5 m$
$m=2$
$9-5(2)=9-10$
$=-1$
iii, $3 m^{2}-2 m-7$
$m =2$
$3(2)^{2}-2(2)-7$
$3 \times 4-2 \times 2-7$
$12-4-7$
= 1 Ans
iv) $\frac{5}{2} m-4$
$m=2$
=$\frac{5}{2} \times 2-4$
$5-4$ = 1
Question 2
i)
$\begin{aligned} 4 p+7 & \\ p &=-2 \\ & 4(-2)+7=-8+7=-1 \end{aligned}$
ii) $-38^{2}+4 p+7$
$-3(-2)^{2}+4(-2)+7$
$-3 \times 4-8+7$
$-12-8+7$
$-13$
iii) $-2 p^{3}-3 p^{2}+4 p+7$
=$-2 x(-2)^{3}-3(-9)^{2}+4(-2)+7$
=$-2 x-8-3 \times 4+4 x-2+7$
=$16-12-8+7$
=3
Question 3
(i) $a^{2}+b^{2}$
$a=2, b=2$
$(2)^{2}+(2)^{2}$
$4+4=8$
ii) $a^{2}+a b+b^{2}$
$a=2 \quad b=2$
$(2)^{2}+2 x a+(2)^{2}$
=$4+4+4$
$=12$
iii) $a^{2}-b^{2}$
=$(2)^{2}-(2)^{2}$
=$4-4$
=0
Question 4
i) $2 a^{2}+b^{2}+1$
$a=0 \quad b=-1$
=$2 \times(0)^{2}+(-1)^{2}+1$
=$0+1+1$
=2
ii) $a^{2}+a b+2$
=$(0)^{2}+0 \times -1+2$
=0
iii) $2 a^{2} b+2 a b^{2}+a b$
=$2(0)^{2}(-1)+2(0)(-1)^{2}+0(-1)$
= 0
Question 5
Given $p=-10$
The value of $p^{2}-2 p-100$
=$(-10)^{2}-2(-10)-100$
=$100+20-100$
=20
Question 6
Given = 10
The value of $z^{3}-3 z+30$
=$(10)^{3}-3(10)+30$
=$1000-30+30$
=1000
Question 7
Given x = 2
The value of $x+7+4(x-5)$ is
$x+7+4 x-20$
$5 x-13$
$5 \times 2-13$
$10-13=-3$
ii) Given $x=2$
The value of $3(x+2)+5 x-7$
=$3 x+6+5 x-7$
=$8 x-1$
=$8(+2)-1$
=$16-1$
=15
iii) Given x = 2
The value of $6 x+5(x-2)$
=$6 x+5 x-10$
=$11 x-10$
=$11 \times 2-10$
=$22-10$
=12
iv) Given x = 2
The value of $4(2 x-1)+3 x+11$
=$8 x-4+3 x+11$
=$11 x+7$
=$11 \times 2+7$
=$22+7$
= 29
Question 8
(i) Given a=-1, b=-2
=$2 a-2 b-4-5+a$
=$2(-1)-2(-2)-4-5+(-1)$
=$-2+4-4-5-1$
=$-8$
ii) Given $a=-1, \quad b=-2$
The value of $2\left(a^{2}+a b\right)+3-a b$
=$2 a^{2}+2 a b+3-a b$
=$2 a^{2}+a b+3$
=$2(-1)^{2}+(-1)(-2)+3$
=$2+2+3$
=7
Excercise =8.4
Question 1
i) $2 n+1$
Number of shapes
1
2
3
No of Line segments
3
5
7
n shape of letter are formed then algrabraic equation is 2n + 1
ii) Number of shapes
1
2
3
No, of line segments
5
8
11
Algrebraic equation is 3n + 2
Question 2
i) Number of shapes
1
2
3
$\vdots$
No, of line segments
4
7
10
$\vdots$
Alegebraic expression is 3nm
ii) Number of shapes
1
2
3
No. of line segments
6
11
16
Algebraic expression is 5n + 1
iii) Number of shapes
1
2
3
No. of line segments
7
12
17
Algebraic expression is 5n+ 2
Question 3
i) $2 n+1$
$n=5 \quad 2(5)+1=11$
$n=10 \quad 2(10)+1=21$
$n=100 \quad 2(100)+1=201$
ii) $3 n+1$
$n=5 \quad 3(5)+1=16$
$n=10 \quad 3(10)+1=31$
$n=100 \quad 3(100)+1=301$
iii) $3 n+2$
$n=5 \quad 3(5)+2=17$
$n=10 \quad 3(10)+2=32$
$n=100 \quad 3(100)+2=302$
iv) $n=5(5)+1=26$
$n=10 \quad 5(10)+1=51$
$n=100 \quad 5(100)+1=501$
v) $5 n+2$
$n=5 \quad 5(5)+2=27$
$n=10 \quad 5(10)+2=52$
$n=100 \quad 5(100)+2=502$
vi) $4 n+3$
$n=5 \quad 4(5)+3=23$
$n=10 \quad 4(10)+3=43$
$n=100 \quad 4(100)+3=403$
Thursday, May 20, 2021
ML AGGARWAL CLASS 7 Chapter 7 Percentage and Its Applications EXERCISE:7.1
EXERCISE:7.1
Question 1
i) $25 \%=\frac{25}{100}=\frac{1}{4}$
ii) $150 \%=\frac{150}{100}=\frac{3}{2}$.
iii) $7 \frac{1}{2} \%=\frac{15}{2} \%=\frac{15 / 2}{100}=\frac{15}{2 \times 100}=\frac{3}{40}$
iv) $33 \frac{1}{3} \%=\frac{100}{3} \%=\frac{100 / 3}{100}=\frac{100}{3 \times 100}=\frac{1}{3} .$
Question 2
i) $\frac{1}{8}=\left(\frac{1}{8} \times 100\right) \%=12.5 \%$
ii) $\frac{5}{4}=\left(\frac{5}{4} \times 100\right) \%=125 \%$
iii) $\frac{9}{16}=\left(\frac{9}{16} \times 100\right) \%=56 \frac{1}{4} \%$
iv) $\frac{3}{7}=\left(\frac{3}{2} \times 100\right) \%=42 \frac{6}{7} \%$
v) $\frac{11}{15}=\left(\frac{11}{15} \times 100\right) \%=73 \frac{1}{3} \%$
vi) $\frac{13}{8}=\frac{11}{8}=\left(\frac{11}{8} \times 100\right) \%=137 \frac{1}{2} \%$
Question 3
i) Given 6 students out of 40 students in a class are absent
percentage of students are absent $=\frac{6}{40} \times 100 \%$
=15%
ii) Given, Antony secured 384 marks out of 500 maiks.
$\therefore$ percentage of marks secured $=\left(\frac{384}{500} \times 100\right) \%$
$=76.8 \%$
iii) Given , A shop has 500 shirts
Out of 500 shirts , 15 are defective
Now, percentage of shirts are defective = $\left(\frac{15}{500} \times 100\right) \%$
=3%
iv) Given,
Vani has 20 gold bangels
Also she has 10 silver bangles
Now, Total number of bangles = 20+ 10 = 30 bangles
∴ percentage of gold bangles = ($\left.\frac{20}{30} \times 100\right) \%$
=66.67 %
$\begin{aligned} \text { percentage of Silver bangles } &=\left(\frac{10}{30} \times 100\right) \% \\ &=33.34 \% \end{aligned}$
v) Total number of voters = 120
Out of 120 , 90 of them voted
Then out of 120, votes did not vote = 120-90=30
ஃPercentage of voters did not vote = $\frac{30}{120} \times 100 \%$
=$25 \%$
Question 4
i) Shaded part $=\frac{3}{4}$
percentage of Shaded part $=\left(\frac{3}{4} \times 100\right) \%$
$=75 \%$
ii) Shaded part $=\frac{2}{6}=\frac{1}{3}$
percentage of Shaded part $=\left(\frac{1}{3} \times 100\right) \%$
$=33.34 \%$
iii) Shaded part $=\frac{5}{8}$
percentage of shaded part $=\left(\frac{5}{8} \times 100\right) \%=62.5 \%$
Question 5
i) $14 \%=\frac{14}{100}=\frac{7}{50} .$
ii) $1 \frac{3}{4} \%=\frac{7}{4} \%=\frac{7}{4 \times 100}=\frac{7}{400} .$
iii) $33 \frac{1}{3} \%=\frac{100}{3} \%=\frac{100}{3 \times 100}=\frac{1}{3} .$
iv) $37.5 \%=\frac{37.5}{100}=\frac{375}{1000}=\frac{3}{8} .$
Question 6
i) $\frac{5}{4}=\left(\frac{5}{4} \times 100\right) \%=125 \%$
ii) $\frac{1}{1}=\left(\frac{1}{1} \times 100\right) \%=100 \%$
iii) $\frac{2}{3}=\left(\frac{2}{3} \times 100\right) \%=66.67 \%$
iv) $\frac{9}{16}=\left(\frac{9}{16} \times 100\right) \%=56.25 \%$
Question 7
Given alloy consists of 7 parts of zinc and 33 parts of copper
Total alloy contains = 33+ 7 = 40
ஃ percentage of copper in alloy = $\left(\frac{33}{40} \times 100\right) \%$
=$82.5 \%$
Question 8
Given , Calcium, carbon and sand in the ratio 12:3:10
Sum of ratio = 12+ 3+ 10 = 25
Percentage of carbon in the chalk = ($\frac{3}{25} \times 100$) % =12%
Question 9
Given Total money = Rs 2500
It is divided among Ravi, Raju and Roy
Out of total money , ravi gets two parts
Raju gets three parts
Roy gets five parts
Total no. of parts = 2+ 3+ 5= 10
Ravi get money = Rs $\frac{2}{10} \times 2500$
=Rs 500
$\begin{aligned} \text { Raju gets money } &=3 \frac{3}{10} \times 2500 \\ &= 750 rs. \\ \text { Roy gets money } &= \frac{5}{10} \times 2500 \\ &= 1250 rs . \end{aligned}$
Percentage of Ravi get money $\begin{aligned} &=\left(\frac{500}{2500} \times 100\right) \% \\ &=20 \% \end{aligned}$
$\begin{aligned} \text { percentage of Raju gets money } &=\left(\frac{750}{2500} \times 100\right) \% \\ &=30 \% \end{aligned}$
$\begin{aligned} \text { Percentage of Roy geT money } &=\left(\frac{1250}{2500} \times 100\right) \% \\ &=50 \% \end{aligned}$
Question 10
i) $28 \%=\frac{28}{100}=0.28 .$
ii) $3 \%=\frac{3}{100}=0.03$
iii) $0.44 \%=\frac{0.44}{100}=0.0044$
iv) $37 \frac{1}{2} \%=\frac{75}{2} \%=\frac{75}{2 \times 100}=0.335$
Question 11
i) $0.65=\frac{65}{100}=\left(\frac{65}{100} \times 100\right) \%=65 \%$
ii) $0.90=\frac{90}{100}=\left(\frac{90}{100} \times 100\right) \%=90 \%$
iii) $2.1=\frac{21}{10}=\left(\frac{21}{10} \times 100\right) \%=210 \%$
iv) $0.02=\frac{2}{100}=\left(\frac{2}{100} \times 100\right) \%=2 \%$
Question 12
i) Given percentage of students in a class are girls = 42%
Actual percentage of students in a class will be 100%
Percentage of students in a class are boys = (100-42)% =58%
ii) A basket have full of apples , oranges and mangoes
Percentage of apples = 50 %
Percentage of oranges = 30%
Percentage of total oranges , apples and mangoes = 100 %
ஃNow percentage of mangoes = [$100-(50+30)$]%
$=[100-80] %$
$=20 %$
EXERCISE:7.2
Question 1
i) $15 %$ of $250=\frac{15}{100} \times 250=\frac{3}{20} \times 250=375$
ii) $25\% $ of 120 litres $=\frac{25}{100} \times 120=\frac{1}{4} \times 120=30$.
iii) $1 \%$ of 1 hour $=\frac{1}{100} \times 3600 \mathrm{sec}=36$ seconds.
iv) $75 \%$ of $\mathrm{Kg}=\frac{75}{100} \times 1000 \mathrm{~g}=\frac{3}{4} \times 1000 \mathrm{gr} \mathrm{ms}=750 \mathrm{~g}$
V) $120 \%$ of $\ 250=\frac{120}{100} \times 250$=Rs 300
vi) $0.6 \%$ of $2 \mathrm{Km}=\frac{0.6}{100} \times 2000 \mathrm{~m}=12 \mathrm{~m}$
Question 2
Given , 8% children of a class like getting wet = 25
Now , children like getting wet=$\frac{8}{100} \times 25$
=$\frac{2}{25} \times 25$
=2
Question 3
Given,
Out of 20 in the fridge, Vasundara ate = 3 ice creams
Percentage of icecreams , she ate = $\frac{3}{20} \times 100 \%$
=15 %
Question 4
i) Required percentage $=\left(\frac{20}{50} \times 100\right) \%=\frac{200}{5} \%=40 \%$
ii) Required percentage $=\left(\frac{60}{40} \times 100\right) \%=\frac{300}{2} \%=150 \%$
iii) Required percentage $=\left(\frac{90cm}{4 \cdot 5 m} \times 100\right) \%=\left(\frac{90}{4.5 \times 100} \times 100\right) \%$
$=\left(\frac{90}{450} \times 100\right) \%$
$=\frac{100}{5} \%$
$=20 \%$
iv) $5.6 \mathrm{~kg}=5.6 \times 1000 \mathrm{~g}=5600 \mathrm{~g}$
$\begin{aligned} \text { Required Percentage }=\left(\frac{3509}{56008} \times 100\right) \% &=\frac{350}{56} \% \\ &=6.25 \% \end{aligned}$
Question 5
i) 12 of $80=\left(\frac{12}{80} \times 100\right) \%=\frac{120}{8} \%=15 \%$
ii) $\quad$ 4 rupees $=4 \times 100$ paide $=400$ paise
25 paise of 400 paise = $\left(\frac{25}{400} \times 100\right) \%=\frac{25}{4} \%=6.25 \%$
iii) $2 \mathrm{~kg}=2 \times 1000 \mathrm{~g}=2000 \mathrm{~g}$
$300 \mathrm{~g}$ of $200 \mathrm{~g}=\left(\frac{300}{2000} \times 100\right) \%=\frac{30}{2} \%=15 \%$
Question 6
Percentage increase $=\left(\frac{\text { intrease in value }}{\text { Original value }} \times 100\right) \%$
A school team won 4 games last years, and this year the team won 6 games.
Increase in the games won = 6-4=2
ஃ percentage increase = $\begin{aligned} &( \left.\frac{2}{4} \times 100\right) \% \\ & \frac{100}{2} \\=& 50 \% \end{aligned}$
Question 7
Original price = Rs 80
Decrease in price = Rs 80 - Rs 60
= Rs 20
Percentage Decrease $=\left[\frac{D ecr e a s e \text { in value }}{\text { original value }} \times 100\right] \%$
$=\left[\frac{20}{80} \times 100\right] \%$
$=\frac{100}{4} \%$
$=25 \%$
Question 8
In Childhood , petrol price was = Rs 1 per litre
Now the price of petrol was = Rs 65 per litre
Increase in the Value of price = Rs 65 - Rs 1
= Rs 64
ஃ Percentage increase = $\left(\frac{64}{1} \times 100\right) \%$
$6400 \%$
Question 9
Last years, the cost of basmati rice= Rs 40 kg
Also , percentage increase = 20 %
∴This price , this year will be increased by
= $\frac{20}{100} \times 40$
=8 a $\mathrm{kg}$
∴ $\begin{aligned} \therefore \text { The price of Bamati rice, tis year } &=40+8 \\ &= ₹ 48 \text { kg. } \end{aligned}$
Question 10
Number of students took exam = 300
Percentage failed = 28%
Number of students failed $=\frac{28}{100} \times 300$
=84
∴ Now , the number of students passed= 300- 84
=216
Question 11
In a constituency, number of voters = 15,000
Percentage of voters who voted = 60%
∴ Number of votes who voted = $\frac{60}{100} \times 15000$
=9000
Question 12
Length of a flag pole painted green = 20%
Painted yellow = 455
Remaining painted red = 100-(20+ 45)
=100-65
= 35%
Total length of pole = 18m
Length of pole painted red =$\frac{35}{100} \times 18m$
=6.3m
Question 13
A chalk contains , calcium = 10%
Carbon = 3%
Oxygen = 12%
and the remaining is sand = 100- (10+3+12)
= 100-25
= 75%
Amount of carbon in $2 \frac{1}{2}$ kg chalk $=\frac{3}{100} \times \frac{5}{2} \times 1000 \mathrm{~g}$ = 75g
Amount of Calcium in $2 \frac{1}{2} \mathrm{~kg} \ chalk \mathrm{}=\frac{10}{100} \times \frac{5}{2} \times 1000 \mathrm{~g}$ = 250g
$\begin{aligned} \text { Amount of } \text { Sand } &=\frac{75}{100} \times \frac{5}{2} \mathrm{~kg} \\ &=1.875 \mathrm{~kg} \end{aligned}$
Question 14
i) $25 \%$ of $x$ is $9 \Rightarrow \frac{25}{100} \times x=9$
$\frac{x}{4}=9$
$x=4 \times 9$
$x=36$
ii) $75 \%$ of $x$ is $15 \Rightarrow \frac{75}{100} \times x=15$
$\frac{3 x}{4}=15$
$x=\frac{15 \times 4}{3}$
$x=20$
iii) $12 \%$ of it is Rs 1080
$\begin{aligned} \Rightarrow \frac{12}{100} \times x &=1080 \\ x &=\frac{1080 \times 100}{12} \\ x &=9000 . \end{aligned}$
iv) $8 \%$ of it is 40 litr $\Rightarrow \frac{8}{100} \times x=40$
$x=\frac{40 \times 100}{8}$
$x=500$
Question 15
Mohini Saved salary =Rs 400
percentage Saved $=10 \%$ of total salary
i.e $\frac{10}{100} \times x=400$
$x=\frac{400 \times 100}{10}$
$x=4000$
$\therefore$ Salary =Rs 4000
Question 16
Number of good apples in basket = 42
percentage of the apples in a basket go bad = 16%
Remaining , percentage of apples go good = 100- 16= 84%
Let Total no of apples be x
i.e 84% of x = 42
$\frac{84}{100} \times x=42$
$x=\frac{42 \times 100}{84}$
$x=50$
∴ Total number of apples = 50
Question 17
Varun got secured marks = 251 marks
and got failed by 19 marks
If he gets passed, then he will get = 251+19= 270 marks
percentage of marks to get pass = 45%
Let maximum marks be 'x'
i.e 45% of x = 270
$\begin{aligned} \frac{45}{100} \times x &=270 \\ x &=\frac{270 \times 100}{45} \\ x &=600 \end{aligned}$
∴ Maximum marks $=600$
Question 18
In a rainy day , percentage of students
present in a school = 94%
Then percentage of students absent = 100- 94%
= 6%
Also given , number of students absent on that
day = 174
Let total strength of school be x
i,e
$\begin{aligned} 6 \% \text { of } x &=134 . \\ \frac{6}{100} \times x &=174 \\ x &=\frac{174 \times 100}{6} \\ x &=2900 . \end{aligned}$
Total strength of school = 2900
Question 19
Percentage of population in a town are men = 40%
Those are women = 39%
Then percentage of population are children = 100-(39+40)
= 100-79
Number of children - 12,600
Let the total population be 'x '
i.e 21% of x = 12,600
$\begin{aligned} \frac{21}{100} \times x &=12,600 \\ x &=\frac{12,600 \times 100}{21} \\ x&=60,000 \end{aligned}$
∴ Now the number of men = 40% of total
$=\frac{40}{100} \times 60,000$
$=24,000$
Question 20
Price of watch is increased by 15%
Increase in price is Rs 90
percentage increase = $\frac{\text { Increase in value }}{\text { original value }} \times 100$
∴ i.e $15=\frac{90}{\text { original value }} \times 100$
$\begin{aligned} \therefore \text { original price } &=\frac{90 \times 100}{15} \\ \text { original price } &=2600 \end{aligned}$
Question 21
i)Let the original number be x
Increase in the number = 30% of x $=\frac{30}{100} \times x=\frac{3 x}{10}$
$\therefore$ New number $=x+\frac{3 x}{10}$
According to given Condition, $x+\frac{3 x}{10}=39$
$\begin{aligned} 10 x+3 x=39 \times 10 \Rightarrow 13 x &=390 \\ x &=\frac{390}{13}=30 \end{aligned}$
Hence , the original number is 30
ii) Let the original number be x
Decrease in number = 8% of x = $\frac{8}{100} \times x=\frac{2 x}{25}$
∴New number = $x-\frac{2 x}{25}$
Accoding to given information, $x-\frac{2 x}{25}=506$.
$25 x-2 x=506 \times 25$
$23 x=506 \times 25$
$x=\frac{506 \times 25}{23}$
$x=550$
Hence, the original number is 550
Question 22
Percentage reduced = 7%
Let the original number be x
Decreased in number = 7% of x =$\frac{7}{100} \times x=\frac{7 x}{100}$
∴ New number = $x-\frac{7 x}{100}=\frac{93 x}{100}$.
According to given , $\frac{93 x}{100}=165$
$x=\frac{465 \times 100}{93}$
$x=500$
∴ Original price = Rs 500
EXERCISE:7.3
Question 1
Cost price =Rs 60, selling price =₹ 874
Profit = Selling price - cost price
= 8 74- 760
= Rs 114
profit percentage = $\left(\frac{p r of i t}{c \cdot p} \times 100\right) \%$
$=\left(\frac{114}{760} \times 100\right) \%$
$=15 \%$
Question 2
Cost price =Rs 2500 ; selling price = Rs 2300
Loss $=$ cost price - selling price
= Rs 2500- Rs 2300
= Rs 200
Loss percent = ($\frac{\text { Loss }}{\text { C.P }} \times 100$)
$\begin{aligned}=&\left(\frac{200}{2500} \times 100\right) \cdot \% \\=8 \% . \end{aligned}$
Question 3
i) Cost price = Rs 250 ; Selling price = Rs 325
As S.p >C.P , Profit = S.P - C.p
=325-250
=Rs 75
profit percent $=\left(\frac{\text { profit }}{c \cdot p} \times 100\right) \%$
$=\left(\frac{75}{250} \times 100\right) \% .$
$=30 \%$
ii) Cost price = Rs 250 , Selling price = Rs 150
As C.P >S.P , Loss = C.P -S.P
=250- 150
= Rs 100
Loss percent $\left.=\frac{\text { Loss }}{C \cdot \rho} \times 100\right) \%$.
$=\left(\frac{100}{250} \times 100\right) \%$
$=40 \%$
Question 4
1st offer :
Cost price = Rs 4800
Profit = $13 \frac{1}{3} \%$ of Cost price = $\frac{40}{3} \times \frac{1}{100} \times 4800$
=640
Selling price = 480+ 640 i.e Cost price +profit = Rs 25440
2nd offer:
Cost price = Rs 3640
Loss = 15 % of cost price = $=\frac{15}{100} \times 3640$
=Rs 546
$\begin{aligned} \text { Selling price } &=\text { cost price - Loss } \\ &=3640-546 \\ &= 3094 rs. \end{aligned}$
Selling price of 1st and 2nd offer = 5440+ 3094
= Rs 8440
As S.P > C.P , He always get gain
i.e Gain = S.P - C.P
= 8534- 8440
= Rs 94
Question 5
cost price of 24 Tables $=24 \times 450$
= Rs 10,800
$\begin{aligned} \text { Selling price of } 16 \text { of them } &=16 \times 600 \\ &=9600 \end{aligned}$
Remaining i.e 24-16 =8 were sold
i.e now s.p of 8 tables = 8 $\times $ 400
= 3200
∴ Total selling price = 9600+ 3200
= 1,2800
As S.P > C.P there is always a gain
Gain = S.p - C.P
12,800- 10,800
= Rs 2000
Question 6
Selling price = Rs 810 ;$ profit =Rs 60
$\begin{aligned} \text { As } \text { profit } &=S \cdot p-c \cdot p \\ c \cdot p &=s \cdot p-\text { profit } \\ &=810-60 \end{aligned}$
Cost price =Rs 750
$\begin{aligned} \text { profit percent } &=\left(\frac{\text { profit }}{c \cdot p} \times 100\right) \% \\ &=\left(\frac{60}{750} \times 100\right) \% \\ &=8 \% \end{aligned}$
Question 7
Selling price -= Rs 3906; Loss = Rs 294
$\begin{aligned} \text { Loss }=&C \cdot p-s \cdot p\\ c \cdot p &=\text { Loss }+S \cdot p \\ &=294+3906 \\ &=4,200 . \end{aligned}$
Loss percent = $\left(\frac{\operatorname{loss} }{C.p} \times 100\right) \%$
$=\left(\frac{294}{4,200} \times 100\right) \%$
$=7 \%$
Question 8
C .P=Rs120, Loss percent =10%
Loss pescent $=\frac{\text { Loss }}{\text { c.p }} \times 100$
$\begin{aligned} \text { Loss } &=\frac{\text { Loss percent } c.p}{100} \\ &=\frac{10 \times 120}{100}=₹12\end{aligned}$
$\begin{aligned} \text { Loss }=& C \cdot p-s \cdot p \\ S \cdot p=&c\cdot p-\text { Loss }\\ &=120-12 \\ &=\ ₹108 \end{aligned}$
Question 9
cost price $=₹ 10,000 ;$ profit $=20 \%$
profit $\%=\frac{\text { Profit }}{C \cdot p} \times 100$
$20=\frac{\text { profit }}{10,000} \times 100$
profit $=\frac{20 \times 10,000}{10}$
profit $=20,00$
As profit = S.P - C.P
S.P =Profit + C.P
= 2000+ 10,000
S.P = Rs 12,000
∴ Selling price = Rs 12,000
Question 10
selling price =Rs 300; profit $=20 \%$
profit percentage $=\left(\frac{\text { profit }}{\text { c.p }} \times 100\right) \%$.
$=\left(\frac{S \cdot p-C\cdot p}{C \cdot p} \times 100\right) \%$
$=\left[\frac{s \cdot p}{c \cdot p}-1\right] \times 100$
$20=\left(\frac{300}{c \cdot p}-1\right) \times 100$
$\frac{300}{c \cdot p}-1=\frac{20}{100}$
$\cdot \frac{300}{c \cdot p}-1=\frac{1}{5}$
$\frac{300}{C \cdot p}=1+\frac{1}{5}=\frac{6}{5}$
$\frac{300}{C \cdot p}=\frac{6}{5}$
$C \cdot P=\frac{300 \times 5}{6}$
$c \cdot$ P=Rs 250
$\therefore$ cost price =Rs 250
Question 11
Selling price = Rs 320 ; Loss percent = 20 %
Loss percent = $\frac{\text { Loss }}{\text { c.p }} \times 100$
$=\frac{C p-s . p}{c \cdot p} \times 100$
$20=\left(1-\frac{320}{c \cdot p}\right) \times 100$
$1-\frac{320}{c \cdot p}=\frac{20}{100}$
$1-\frac{320}{c \cdot p}=\frac{1}{5}$
$\frac{320}{c \cdot p}=1 \frac{1}{5}$
$\frac{320}{6 \cdot p}=\frac{5-1}{5}$
$\frac{320}{c \cdot p}=\frac{4}{5}$
$c \cdot p=\frac{320 \times 5}{4}$
$c \cdot$ p=Rs 400
∴ Cost price = Rs 400
Question 12
selling price = Rs 522 ; profite 16%
profit $\%=\left(\frac{\text { profit }}{c \cdot p} \times 100\right)$
$=\frac{S \cdot p-c \cdot p}{C.p} \times 100$
$=\left(\frac{s \cdot p}{c \cdot p}-1\right) \times 100$
$16=\left(\frac{522}{c . p}-1\right) \times 100$
$\frac{522}{c.p}-1=\frac{16}{10}$
$\frac{522}{c \cdot p}-1=\frac{4}{25}$
$\frac{522}{c \cdot p}=1+\frac{4}{25}$
$\frac{522}{c \cdot p}=\frac{29}{25}$
$C \cdot p=\frac{522 \times 25}{29}$
$C \cdot$ p=Rs 750
$\therefore$ cost price =Rs 70
Question 13
selling price $=57360$; Loss $\%=8 \%$
$\begin{aligned} \text { Loss pescent } &=\left(\frac{\text { Loss }}{\text { c.p }} \times 100\right) \% \\ & \left.=\frac{C \cdot p-s \cdot p}{C \cdot p} \times 100\right) \end{aligned}$
$=\left(1-\frac{s \cdot p}{c \cdot p}\right) \times 100$
$8=\left(1-\frac{\partial 360}{c \cdot p}\right) \times 1$
$\frac{8}{100}=1-\frac{7360}{c. p}$
$\frac{2}{25}=1=\frac{7360}{c .p}$
$\frac{7360}{c p}=1-\frac{2}{25}$
$\frac{7360}{c \cdot p}=\frac{23}{25}$
$c.{p}=\frac{7360 \times 25}{23}$
$c \cdot$ p=Rs 8,000
cost price =Rs 8000
Question 14
Selling price= Rs 3168 ; Loss = $12 \%$
Loss percentage $=\frac{\text { Loss }}{C \cdot p} \times 100$
$=\left[1-\frac{S \cdot p}{C \cdot p}\right] \times 100$
$12=\left[1-\frac{3168}{c.p}\right] \times 100$
$1-\frac{3168}{6.8}=\frac{12}{100}$
$1-\frac{3168}{c\cdot p}=\frac{3}{25}$
$\frac{3168}{6 . p}=1-\frac{3}{25}$
$\frac{3168}{c. p}=\frac{22}{25}$
$c \cdot p=\frac{3168 \times 25}{23}$
C.p =Rs 3600
Given selling price = 3870
As S.P > C.P he gains
So gain = S.P - C.P = 3870-3600
= 270
Gain percentage = ($\frac{\text { Gain }}{\text { c.p }} \times 100$)%
$=\left(\frac{270}{3600} \times 100\right) \%$
=75 %
Question 15
selling price =Rs4550, Loss =9 %
Loss percent $=\left[1-\frac{S \cdot p}{C.p}\right] \times 100$
$9=\left[1-\frac{4550}{c \cdot p}\right] \times 100$
$1-\frac{4550}{c \cdot p}=\frac{9}{100}$
$\frac{4550}{c \cdot p}=1-\frac{9}{100}$
$\frac{4550}{c \cdot p}=\frac{91}{100}$
$c \cdot p=\frac{4550 \times 100}{91}$
$C \cdot$ p=Rs 5000
As given selling price = 4825
As C.P > S.P, so he lose
Loss = C.P - S.P
= 5000- 4825
Loss = Rs 175
Loss percent = ($\frac{\text { Loss }}{c. p} \times 100$)
$=\left(\frac{175}{5000} \times 100\right)$
$=3.5 \%$
EXERCISE:7.4
Question 1
Simple Interest $=\frac{\text { principal } \times \text { Rate } \times \text { Time }}{100}$
i.e $I=\frac{P \times R \times T}{100}$.
i) $\quad p=350 \quad ; \quad R=11 \% \quad T=2$ years
$I=\frac{350 \times 11 \times 2}{100}$
I=Rs 77
Total amount $=S \cdot I+P$
$=77+350$
=Rs 427
ii) $p=20,000 \quad T=4 \frac{1}{2}=\frac{9}{2}$ years $; R=8 \frac{1}{2}=\frac{17}{2} \%$
$\begin{aligned} I=& \frac{20,00 \times \frac{17}{2} \times \frac{9}{2}}{160} \\ &=\frac{20000 \times 17 \times 9}{4 \times 100} \\ &=₹ 7650 \end{aligned}$
∴ Amount = principal + I
=20,000+ 7,650
= 27,650
iii) $p=₹ 648 ; R=16 \frac{2}{3}=\frac{50}{3} ; T=8$ months = $\frac{8}{12}$ years
$I=\frac{648 \times \frac{50}{3} \times \frac{8}{12}}{100}$
$I=\frac{648 \times 50 \times 8}{36 \times 100}$
I=Rs 73
$\begin{aligned} \text { Amount } &=S \cdot 1+P \\ &=73+648 \\ &=₹ 721 \end{aligned}$
Question 2
i) $S \cdot I=200, \quad p=2,500, \quad R=4 \%$
$I=\frac{P \times R \times I}{100}$
Time, $T=\frac{100 \times \underline{1}}{P \times R} .$
$T=\frac{100 \times 200}{2,500 \times 4}$
$T=2$ years
ii) $S \cdot I=2730, \quad P=12,000, R=6 \frac{1}{2}=\frac{13}{2}$
$\begin{aligned} T=& \frac{100 \times I}{P \times R} \\=& \frac{100 \times 2730}{12,000 \times 13 / 2} \\ &=\frac{100 \times 2730 \times 2}{12000 \times 13} \end{aligned}$
$T=\frac{7}{2}$ years $=3 \frac{1}{2}$ years
Question 3
i) $P=1560, \quad I=585, \quad T=3$ yeass
$I=\frac{p \times R \times T}{100}$
Rate of interest R= $\frac{100 \times I}{P \times T}$
$R=\frac{100 \times 585}{1560 \times 3}=(1.25 \times 100) \%$
$R=\frac{25}{2} \%=12 \frac{1}{2} \%$
ii) $I=325, \quad p=1625, \quad T=2 \frac{1}{2}=\frac{5}{2}$ years
$\begin{aligned} R &=\frac{100 \times I}{P \times J} \\ &=\frac{100 \times 325}{1625 \times 5 / 2} \\ &=\frac{100 \times 325 \times 2}{1625 \times 5} \\ &=8 \% \end{aligned}$
Question 4
i) $R=16 \% ; T=2 \frac{1}{2}$ years $=\frac{5}{2}$ years, $I=3840$
$I=\frac{P R I}{100}$
$P=\frac{100 \times I}{R \times T}$
$P=\frac{100 \times 3840}{16 \times 5 / 2}$
$P=\frac{100 \times 3840 \times 2}{16 \times 5}$
P=Rs 9600
∴ Principal = Rs 9600
ii) $R=7 \frac{1}{2}=\frac{15}{2} \% \quad ; \quad T=2$ years 4 months $\quad I=2730$
$=\left(2+\frac{4}{12}\right)$ year
$=\left(2+\frac{1}{3}\right)$ years
$=\frac{7}{3}$ years
$\begin{aligned} P &=\frac{100 \times I}{R \times T} \\ &=\frac{100 \times 2730}{\frac{15}{2} \times \frac{7}{3}} \\ &=\frac{100 \times 2730 \times 6}{15 \times 7} \end{aligned}$
Principal p = Rs 15,600
Question 5
i) Amount = Rs 1320; Principal = Rs 1200
S.I = A-P = 1320 - 1200
S.I = 120
$I=\frac{P \times R \times I}{100}$
$R=\frac{100 \times I}{P \times T}$
$R=\frac{100 \times 120}{1200 \times 2}$
$R=5 \%$ per annum
ii) Amount=Rs 400; principal =Rs 300
$S: I=A-P=400-300$
I=Rs 100
$R=\frac{100 \times 100}{300 \times 2}$
$R=\frac{50}{3}=16 \frac{2}{3} \%$ pes annam.
Question 6
i) $A=1950, P=1250, R=16 \%$
$I=A-P=1950-1250= 700$
$I=\frac{P \times R \times T}{100}$
$T=\frac{100 \times I}{P \times R}$
$T=\frac{100 \times 700}{1250 \times 16}$
$\quad$ Time, $T=\frac{7}{2}$ years
ii) $A=8447.50, P=6540 ; R=12 \frac{1}{2}=\frac{25}{2} .$
$I=A-P=8447.5-6540$
$I=19075$
Time, $\begin{aligned} T &=\frac{100 \times 1907.5}{6540 \times 25 / 2} \\ T &=\frac{100 \times 19075 \times 2}{6540 \times 25} \end{aligned}$
Time, $T=\frac{7}{3}$ years
Question 7
$R=4 \% \quad A=16,240, \quad P=14,000$
$\begin{aligned} I=& A-P=16,240-14,000 \\ & I=2,240 . \\ \text { Time } &=\frac{100 \times I}{P \times R} \\ \text { Time } &=\frac{100 \times 2,240}{14,000 \times 4} \\ &=4 \text { years } \end{aligned}$
Question 8
$T=6$ years, Given Amount invested trebled
So A 3 $\times$ Principal
A = 3p
$\begin{aligned} I=& A-\rho=3 p-p \\ & I=2 p \\ I=& \frac{P \times R \times f}{100} \\ R &=\frac{100 \times 1}{p \times 1} \\ & R=\frac{100 \times 20}{P \times 6} \\ & R=\frac{100}{3}=33 \frac{1}{3} \% \text { pes annm } \end{aligned}$
Question 9
i) $A=4,500 ; R=20 \% T=5$ years
$I=A-P$
$I=4,500-P$
Also $I=\frac{p \times R \times {j}}{100}$
$4,500-P=\frac{P \times 20 \times 5}{100}$
$4,500-P=P$
$\begin{aligned} p+p=& 4,500 \\ 2 p=4,500 \\ \text { principal, } P=2250 \end{aligned}$
ii) $A=2420, R=4, \quad T=2 \frac{1}{2}$ yeass $=\frac{5}{2}$ years
$I=A-P$
$I=2420-P$
Also $I \cdot \frac{P \times R \times 1}{100}$
$2420-p=\frac{p \times 4 \times 5}{2 \times 100}$
$2420-R=\frac{1}{10}$
$P+\frac{p}{10}=2420$
$\frac{11P}{10}=2420$
$P=\frac{2420 \times 10}{11}$
$P=2200$
$\therefore$ principal, $p=2,200$