Exercise 5.1
Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Exercise 5.2
Question 1
Question 2
Question 3
Question 4
Question 5
1 8 A
Question 6
Question 7
--------------
$5832=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
$\begin{aligned}=2^{3} \times 3^{3} \times 3^{3} &=(2 \times 3 \times 3)^{3} \\ &=18^{3} \end{aligned}$
$\therefore 18^{3}=5832$ is a perfect cube
And 5832 is the cube of number 18.
(iii) 13824
Expressing it into prime factors
$\begin{array}{c|c}2 & 13824 \\\hline 2 & {6912} \\\hline 2 & 3452 \\\hline 2 & 1728 \\\hline 2 & 864 \\\hline 3 & 432 \\\hline 3 & 144 \\\hline 2 & {78} \\\hline 3 & {16} \\\hline 2 & {8} \\\hline 2 &{4} \\\hline 2 & 2 \\ 2 & \hline\end{array}$
$13824=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
=$2^{3} \times 2^{3} \times 2^{3} \times 3^{3}$
$=(2 \times 2 \times 2 \times 3)^{3}$
$13824=24^{3}$ is a perfect cube
(iv) 35937
$\begin{array}{l|l}3 & 35932 \\\hline 3 & 11979 \\\hline 3 & 3993 \\\hline 3 & 1331 \\\hline 3 & 447 \\\hline & 149\end{array}$
$=3 \times 3 \times 3 \times 3 \times 3 \times 149$
∴ It is not a perfect cube
$\begin{array}{l|l}2 & 1536 \\\hline 2 & 768 \\\hline 2 & 384 \\\hline 2 & 192 \\\hline 2 & 96 \\\hline 2 & 48 \\2 & 24 \\\hline 2 & {12} \\\hline 2 & 6\end{array}$
$1536=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
1536 is not a perfect cube
To make it perfect cube, we should divide the given number by 3, then the prime factorisation of the quotient will not contain 3.
In that case
$1536 \div 3=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=512$
Which is a perfect cube
So the smallest number by which 1536 must be divided So that quotient is a perfect cube is 3
(ii) 10985
Expressing it into prime factors, we have
$\begin{array}{l|l}5 & 10985 \\\hline 13 & 2197 \\\hline 13 & 169 \\\hline 13 & 13 \\\hline &1\end{array}$
10985= $5 \times 13 \times 13 \times 13$
10985 is not a perfect cube.
To make it perfect cube, we should divide the given number by 5 ,then the prime factorisation of the quotient will not contain 5.
In that case
$10985 \div 5=13 \times 13 \times 13=2197$ , Which is a perfect cube
So, the smallest numbr by which 10985 must be divided
So that quotient is a perfect cube is 5
(iii) 28672
Expressing it into prime factors
$\begin{array}{l|l}2 & 28672 \\\hline 2 & 14336 \\\hline 2 & 7168 \\\hline 2 & 3584 \\\hline 2 & 1792 \\\hline 2 & 896 \\\hline 2 & 448 \\\hline 2 & 224 \\\hline 2 & 112 \\\hline 2 & 56 \\\hline 2 & 28 \\\hline 2 & 14 \\\hline & 7\end{array}$
$28172=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7$
28672 is not a perfect cube
To make it a perfect cube, we should divide the given number by 7
Then the prime factorisation will not '7'
In that case $28672 \div 7=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times \times 2$
$=4096$ is a perfect cube
So the smallest number by which given number must be divided
So that product will become perfect cube is ' 7'
(iv) 13718
Expressing it in the prime factors
$\begin{array}{l|l}2 & 13718 \\\hline 19 & 689 \\\hline 19 & 361 \\\hline 19 & 19 \\\hline & 1 \\\end{array}$
$13718=19 \times 19 \times 19 \times 2 .$
It is not a perfect cube
To make it a perfecet cube, we should divide the given number by 2 , then prime factorisation will no contain '2'
In that case $13718 \div 2=19 \times 19 \times 19=6855$ is a perfect cube
So the smallest number 2 must be diivided from given number to make it perfect cube.
$512 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
$=2^{3} \times 2^{3} \times 2^{3}=8^{3}$
Cube of even natural number
(iii) $1000=10 \times 10 \times 10=10^{3}$ , Cube of even natural number
(iv)$2197=13 \times 13 \times 13=13^{3}$, Cube of odd natural number
(v)
$\begin{aligned} 4096=4 \times 4 \times 4 \times 4 \times 4 \times 4 &=4^{3} \times 4^{3} \\ &=16^{3}\end{aligned}$ Cube of even natural number
(vi) $6859=19 \times 19 \times 19=$$19^{3}$ Cube of odd nuatural number.
(i) 231 , unit's digit of cube of number is 1
(ii) 358, One's digits of cube of number is 2
(iii) 419 One's digits of cube of number is 9
(iv)725 One 's digits of cube of number is 5
(v)854 One's digits of cube of number is 4
(vi)987 One's digits of cube is 3
(vii)752 One's digits of cube is 8
(viii)893 One's digits of cube is 7.
$\begin{array}{l|l}23 & 12167 \\\hline 23 & 529 \\\hline &23\end{array}$
$12167=23 \times 23 \times 23$
Hence, Cube root of 12167 is 23
(ii)35937
Expressing it in to prime factors
$\begin{array}{l|l}33 & 35937 \\\hline 33 & 1089\\\hline &33\end{array}$
$35937=33 \times 33 \times 33$
Hence, cube root of 35937 is 33
(iii) 42875
Expressing it in to prime factors
$\begin{array}{l|l}35 & 42875 \\\hline 35 & 1225\\\hline &35\end{array}$
$42875=35 \times 35 \times 35$
Hence, Cube root of 43875is 35
(iv) 21952
Expressing it in to prime factors
$\begin{array}{l|l}2 & 21952 \\\hline 2 & 10976 \\\hline 2 & 5488 \\\hline 2 & 2744 \\\hline 2 & 1372 \\\hline 2 & 686 \\\hline 7 &343 \\\hline 7 & 49 \\\hline&7\end{array}$
$=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7$
$=(2 \times 2 \times 7)^{3}=(28)^{3}$
Hence, cube root of 21952 is 28
(v) 373248
Expressing it into prime factors
$\begin{array}{l|l}2 & 373248 \\\hline 2 & 186624 \\\hline 2 & 93312 \\\hline 2 & 46656 \\\hline 2 & 23328 \\\hline 2 & 11664 \\\hline 2 & 5832 \\\hline 2 & 2916 \\\hline 2 & 1458 \\\hline 3 &729 \\\hline 3 & 243 \\\hline 3 & 81 \\\hline 3& 27 \\\hline 3&9\\\hline &3\end{array}$
$333248=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
$=(2 \times 2 \times 2 \times 3 \times 3)^{3}$
$=72^{3}$
Hence, Cube root of 373248 is 72
(vi)32768
Expressing it in to prime factors
$\begin{array}{l|l}2 & 32768 \\\hline 2 & 16384 \\\hline 2 & 8192 \\\hline 2 & 4096 \\\hline 2 & 2048 \\\hline 2 & 1024 \\\hline 2 & 512 \\\hline 2 & 256 \\\hline 2 & 128 \\\hline 2 &64 \\\hline 2 & 32 \\\hline 2 & 16 \\\hline 2& 4 \\\hline 2&2\\\hline &2\end{array}$
$32768=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
$=(2 \times 2 \times 2 \times 2 \times 2)^{3}$
$=32^{3}$
Hence , Cube root of 32768 is 32.
(vii)262144
Expressing it in to prime factors
$\begin{array}{l|l}2 & 262144 \\\hline 2 & 131072 \\\hline 2 & 65536 \\\hline 2 & 32768 \\\hline 2 & 16384 \\\hline 2 & 8192 \\\hline 2 & 4096 \\\hline 2 & 2048 \\\hline 2 & 1024 \\\hline 2 &512 \\\hline 2 & 256 \\\hline 2 & 128 \\\hline 2& 64 \\\hline 2&32\\\hline 2&16 \\\hline 2& 8\\\hline 2&4\\\hline 2&2\\\hline &1\end{array}$
$262144=\underbrace{2 \times 2 \times 2} \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
$=(2 \times 2 \times 2 \times 2 \times 2 \times 2)^{3}$
$=64^{3}$
Hence, Cube root of 262144 is 64
(viii) 157464
Expressing it into prime factors
$\begin{array}{l|l}2 & 157464 \\\hline 2 & 78732 \\\hline 2 & 39366 \\\hline 3 & 19683 \\\hline 3 & 6561 \\\hline 3 & 2187 \\\hline & 48 \\\hline 2 & 24 \\2 & 12 \\\hline 2 & 6 \\\hline 3 & 3 \\\hline\end{array}$
$=2^{3} \times 3^{3} \times 3^{3} \times 3^{3}$
$=(2 \times 3 \times 3 \times 3)^{3}$
$=54^{3}$
Hence , Cube root of 157464 is 54
So $\sqrt[3]{59319}=27$
(iii) 85184
$\frac{85}{\text {second group }}$
$\frac{184}{\text { First group }}$
184 ends with 4 . we know that 4 comes at unit's
place of number only when its cube root ends in 4
Second group decides ten's digits
i.e 85 lies in between $4^{3}=64$ and $5^{3}=125$
we know that one's place of smaller number 64 as
ten's digits of required Cube root
So $\sqrt[3]{85184}=44$
(iv) 148877
$\frac{148}{\text { second group }}$
$\frac{877}{\text { First group }}$
Step:1 First form group of three digits starting from rightmost
digit (i.e unit's digits ) of number
Step:2 First group decides unit's digits of required root
The number 877 ends with 7. we know that 7 comes at
unit's place of a number only when it's cube root ends in
3
So the unit digit of required Cube root is 3
Step:3 If no group is left then number obtained is the cube root of given number
But if second group exits (in this case 148) then it will decide the ten's digit of required
cube root
Now take second group i.e 148
We know that $5^{3}=125$ and $6^{3}=216$ . Also $125<148<216$
We take one's place of the smaller number 725 as the ten's digit of required
cube root (i.e 5)
Step: 4 If no group is left then the digit obtained in step 2 and
step 3 decides the cube root of given number
i.e $\sqrt[3]{148877}=53$.
-250047= $7\times -7\times -7 \times -3 \times -3 \times-3\times -3\times -3\times -3$
= $(-7\times -3\times -3)^{3}$
$=(-63)^{3}$
Hence , Cube root of -250047 is -63
(ii) $\frac{-64}{1331}$
Expressing 64 and 1331 in to prime factors
$\begin{aligned} 64 &=4 \times 4 \times 4=4^{3} \\ 1331 &=11 \times 11 \times 11=11^{3} \end{aligned}$
$\frac{-64}{1331}=\frac{(-4)^{3}}{(11)^{3}}=\left(\frac{-4}{11}\right)^{3} \Rightarrow \sqrt[3]{\frac{-6 y}{1331}}=\frac{-4}{11}$
(iii) $4 \frac{17}{27}=\frac{125}{27}$
Expresssing 125 and 27 it into prime factors
$125= 5 \times 5 \times 5=5^{3}$
$27=3 \times 3 \times 3=3^{3}$
Hence,$\sqrt[3]{\frac{125}{27}}=\sqrt[3]{\left(\frac{5}{3}\right)^{3}}=\frac{5}{3} .$
(iv)$5 \frac{1182}{2197}=\frac{12167}{2197}$
$12167=23 \times 23 \times 23=23^{3}$
$2193=13 \times 13 \times 13=13^{3}$
$\frac{12167}{2197}=\frac{23^{3}}{13^{3}} =\left(\frac{23}{13}\right)^{3}$
Hence, Cube root of $5 \frac{1182}{2197}$ is $\frac{23}{13}$
$729=9 \times 9 \times 9=9^{3}$
$512 \times 729=8^{3} \times 9^{3}$= $(8 \times 9)^{3}=72^{3}$
Hence, $\sqrt[3]{512 \times 729}$ = $\sqrt[3]{72^{3}}$= 72
(ii) $\sqrt[3]{(-1331) \times(3335)}$
Expressing it into prime factors
$\begin{array}{l|l}11 & 1131 \\\hline 11 & 121\\\hline11&11\\\hline &1\end{array}$
$\begin{array}{l|l}5 & 3375\\\hline 5 & 675 \\\hline 5 & 135 \\\hline 3 & 27 \\\hline 3 & 9 \\\hline 3 & 3\\\hline&1\end{array}$
$-1331=(-11)^{3}$
$\begin{aligned} 3375 \times 5 \times 5 \times 3 \times 3 \times 3=&(5 \times 3)^{3} \\ &=15^{3} \end{aligned}$
$-1331 \times 3375=(-11 \times 15)^{3}$
Hence $\sqrt[3]{(-1331 \times 3] 75)}=\sqrt[3]{(-11 \times 15)^{3}}$ = $-11 \times 15$
$=-165$
$\sqrt[3]{0.003335}=\sqrt[3]{\frac{3375}{1000000}}$
$=\sqrt[3]{\frac{15 \times 15 \times 15}{100 \times 100 \times 100}}$
$=\frac{15}{100}=0.15$
(ii) 19.683
$\sqrt[3]{19.683}=\sqrt[3]{\frac{19683}{1000}}$
$=\sqrt[3]{\frac{27 \times 27 \times 27}{6 \times 10 \times 10}}$\
$=\frac{27}{10}=2.7$
$\begin{array}{l|l}3 & 19683 \\\hline 3& 6561 \\\hline 3 & 2187 \\\hline 3 & 729 \\\hline 3 & 243 \\\hline 3 & 81 \\\hline 3 &27 \\\hline 3 & 9 \\\hline&3\end{array}$
=$3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
=$(3 \times 3 \times 3)=27^{3}$
$=19683$
$\frac{8748 \times 9}{4}=19683=27^{3}$
$\begin{array}{l|l}4 & 21952 \\\hline 4& 5488 \\\hline 4 &1372 \\\hline 7 &343 \\\hline 7 &49 \\\hline \\\hline&7\end{array}$
$=4 \times 4 \times 4 \times 7 \times 7 \times 7$
$a^{3}=(4 \times 7)^{3}$
$a=28 m$
∴ Length of side of box = 28 m
(i) 729
Sol :
Prime fractorisation
$\begin{array}{r|l}3&729\\ \hline 3& 243 \\ \hline 3&81\\ \hline 3& 27\\ \hline 3& 9 \\ \hline 3&3\\ \hline&1\end{array}$
⇒729=3×3×3×3×3×3
∴$729=27^{2}$
because 729 can be expressed as product of pairs of equal prime factors.
(ii) 5488
Sol:
$\begin{array}{r|l}2& 5488\\ \hline 2& 2744 \\ \hline 2&1372\\ \hline 2& 686\\ \hline 7& 343 \\ \hline 7&49\\ \hline 7&7\\ \hline&1\end{array}$
⇒5488= 2×2×2×2×7×7×7
Since 7 left unpaired 5488 in not a perfect square
(iii)1024
Sol:
$\begin{array}{r|l}2&1024\\ \hline 2& 512 \\ \hline 2&256\\ \hline 2& 128\\ \hline 2& 64 \\ \hline 2&32\\ \hline2&16 \\ \hline 2&8\\ \hline 2&4\\ \hline 2&2\\ \hline&1\end{array}$
⇒1024= 2x2x2x2x2x2x2x2x2x2x2
since 1024 is expressed as the product of pairs of equal prime number so it is a perfect square
(iv) 243
Sol:
$\begin{array}{r|l}3&243\\ \hline 3& 81 \\ \hline 3&27\\ \hline 3& 9\\ \hline 3& 3 \\ \hline&1\end{array}$
$243=3 \times 3 \times 3 \times 3 \times 3$
As ' 3 ' let unpaired, So 243 is not a square (perfect)
(i) 1296
$\begin{array}{r|l}2&1246\\ \hline 2& 648 \\ \hline 2&324\\ \hline 2& 162\\ \hline 3& 81 \\ \hline 3&27\\ \hline3&9 \\ \hline 3&3\\ \hline&1\end{array}$
⇒1296=2x2x2x2x3x3x3x3
since 1296 is expressed as the product of pairs of equal prime numbers so it is a perfect square
1296= $2^{2} \times 2^{2} \times 3^{2} \times 3^{2}$
1296= $(2 \times 2 \times 3 \times 3)^{2}=36^{2}$
∴ 1296 is square of 36
(ii) 1784
Sol:
$\begin{array}{r|l}2&1784\\ \hline 2& 892 \\ \hline 2&446\\ \hline 223& 223\\ \hline&1\end{array}$
1784= $=2 \times 2 \times 2 \times 223$
As 1784 can not be expressed as product of pairs of
equal prime factors, so is not a perfect square
(iii) 3025
Sol:
$\begin{array}{r|l}5&3025\\ \hline 5& 605 \\ \hline 11&121\\ \hline&1\end{array}$
$3025=5 \times 5 \times 11 \times 11$
Since 3025 can be expressed as the product of pairs of
equal prime factors.
$3025=(5 \times 11)^{2}=55^{2}$
Hence, 55 is a number whose square is 3025
(iv) 3969
Sol:
$\begin{array}{r|l}3&3969\\ \hline 3& 1323 \\ \hline 3&441\\ \hline 3& 147\\ \hline 3& 49 \\ \hline 7&7\\ \hline&1\end{array}$
$3969=3 \times 3 \times 3 \times 3 \times 7 \times 7$
3969 Can be expressed as product of pairs of
equal prime numbers.
$3969=3^{4} \times 3^{2} \times 7^{2}$
$3969=(3 \times 3 \times 7)^{2}$
$3969=63^{2}$
Hence, 63 is the number whose square is 3969
(i) 1
(ii) 4
(iii) 1
(iv) 9
(v) 6
(vi) 5
(vii) 9
(viii) 4
(ix) 0
(x) 6