Monday, March 15, 2021

ML Aggarwal Class 8 Chapter 1 Rational Numbers Exercise 1.1

 Exercise 1.1

Question 1

(i) $\frac{4}{7}+\frac{5}{7}$

⇒$\frac{4+5}{7}$

⇒$\frac{9}{7}$


(ii) $\frac{7}{-13}$ and $\frac{4}{-13}$

⇒$\frac{7}{-13}+\frac{4}{-13}$

⇒$\frac{7\times (-1)}{-13 \times (-1)}+\frac{4\times (-1)}{-13\times (-1)}$ Make denominator as +ve number

⇒$\frac{-7}{13}+\frac{-4}{13}$

⇒$\frac{-7+(-4)}{13}=\frac{-11}{13}$


Question 2

To verify $\frac{5}{11}+4 \frac{3}{9}$

$\frac{5}{11}+\frac{39}{9}$

$\frac{5 \times 9+39 \times 11}{99}$ LCM of 11, 9 = 99

⇒$\frac{45+429}{99}$

⇒$\frac{474}{99}=\frac{158}{33}$


(ii) $\frac{-4}{9}+2 \frac{12}{13}$

⇒$\frac{-4 \times 13+38 \times 9}{117}$ L.C.M of 9 , 13=117

⇒$\frac{-52+342}{17}$

⇒$\frac{290}{117}$


Question 3

To verify the commutative property of addition, we have to 

SHOW  

⇒$\frac{-4}{3}+\frac{3}{7}=\frac{3}{7}+\left(\frac{-4}{3}\right)$

L.H.S⇒$\frac{-4}{3}+\frac{3}{7}$

⇒$\frac{-4 \times 7+3 \times 3}{21}$  LCM OF 3,7 = 21

⇒$\frac{-28+9}{21}$

⇒LCM =  $\frac{-19}{21}$

⇒RHS =   $\frac{3}{7}+\left(\frac{-4}{3}\right)$

⇒$\frac{3 \times 3+(-4) \times 7}{21} \quad \mathrm{LCM}$ of $3,7=21$

⇒RHS =  $\frac{9-28}{21}$

 ∴ LHS = RHS

⇒$\frac{-4}{3}+\frac{3}{7} a=\frac{3}{7}+\left(\frac{-4}{3}\right)$


(ii) To verify commutative law of addition, we have  

to show  $\left(\frac{-2}{-5}\right)+\frac{1}{3}=\frac{1}{3}+\left(\frac{-2}{-5}\right)$  

LHS ⇒$\frac{-2}{-5}+\frac{1}{3}$

⇒$\frac{-2 x(-1)}{-5 x(-1)}+\frac{1}{3} \quad$ Make denominator +ve number

⇒$\frac{2}{5}+\frac{1}{3}$

⇒$\frac{2 \times 3+1 \times 5}{15} \quad$ Lcm OF $5,3=15$

⇒$\frac{6+5}{15}$

⇒LCM $=\frac{11}{15}$


RHS ⇒  

 ⇒ $=\frac{1}{3}+\frac{2}{5}$

$=\frac{1 \times 5+2 \times 3}{15} \cdot$ LCM of $3,5=15$

$=\frac{5+6}{15}$

R.H.S $=\frac{11}{15}$

LHS = RHS 

$\left(\frac{-2}{-5}\right)+\frac{1}{3}=\frac{1}{3}+\left(\frac{-2}{-5}\right)$

∴Commutative law of addition i verified 


(iii) $\frac{9}{11}$ and $\frac{2}{13}$

To verity the commutative show of addition, we have to

show $\quad \frac{9}{11}+\frac{2}{13}=\frac{2}{13}+\frac{9}{11}$

⇒L.H.S $=\frac{9}{11}+\frac{2}{13}$

⇒$=\frac{(9 \times 13)+(2 \times 11)}{143} \quad$ LCM OF  $11,13=143$

⇒$=\frac{117+22}{143}$

⇒LCM  $=\frac{139}{143}$


⇒R.H.S $=\frac{2}{13}+\frac{9}{11}$

$=\frac{(2 \times 10)+(9 \times 13)}{143} \mathrm{LCM}$ of $13,11=143$

⇒$=\frac{22+117}{143}$

RHS  $=\frac{139}{143}$

⇒L.H.S $=$ R.H.S

$\frac{9}{11}+\frac{2}{13}=\frac{2}{13}+\frac{9}{11}$

∴ Commutative law of addition is verified


 Question 4

(i) The additive inverse of $\frac{2}{-3}=-\left(\frac{2}{-3}\right)$
$=-\left(\frac{2 x-1}{-3 x-1}\right)$
$=-\left(\frac{-2}{3}\right)$
=$\frac{2}{3}$

(ii) The additive inverse of $\frac{-7}{-12}=-\left(\frac{-7}{-12}\right)$
$=-\left(\frac{-7 x(-1)}{-12 x(-1)}\right)$
$=\left(\frac{-7}{12}\right)$
$=\frac{-7}{12}$

Question 5

(i) $x=\frac{10}{13}$
$-x=-\frac{10}{13}$
$-(-x)=-\left(-\frac{16}{3}\right)$
$-(-x)=\frac{-1 x(-10)}{3}$
-(-x)=x

(ii) $x=-\frac{5}{17}$
$-x=-1 \times \frac{-5}{17}$
$=\frac{(-1) \times(-5)}{17}$
$-x=\frac{5}{17}$
$-(-x)=-\left(\frac{5}{17}\right)$
$-(-x)=\frac{-1 \times 5}{17}$
$-(-x)=\frac{-5}{17}$
-(-x)=x

Question 6 

(i) $\frac{4}{5}+\frac{11}{7}+\left(\frac{-7}{5}\right)+\left(\frac{-2}{7}\right)$

⇒$\left[\frac{4}{5}+\left(\frac{-7}{5}\right)\right]+\left[\frac{11}{7}+\left(\frac{-2}{7}\right)\right]$

(Using Commutative and associativity of addition)

⇒$\left[\frac{4-7}{5}\right]+\left[\frac{11-2}{7}\right]$

⇒$\left[\frac{-3}{5}\right]+\left[\frac{9}{7}\right]$

⇒$\frac{(-3 \times 7)+(9 \times 5)}{35} \quad$ LCM of $5,7=35$

⇒$\frac{-21+45}{35}=\frac{24}{35}$


(ii) $\frac{3}{7}+\frac{4}{9}+\left(\frac{-5}{21}\right)+\frac{2}{3}$ 

⇒$\left[\frac{3}{7}+\left(\frac{-5}{21}\right)\right]+\left[\frac{4}{9}+\frac{2}{3}\right]$

⇒(By using the commutative and associativity of addition)

⇒$\left[\frac{(3 \times 3)+(-5 \times 1)}{21}\right]+\left[\frac{4 \times 1+2 \times 3}{9}\right] \quad \begin{array}{l}\text { LCM OF } 7,21=21 \\ \text { LCM OF } 9,3=9\end{array}$

⇒$\left[\frac{9-5}{21}\right]+\left[\frac{4+6}{9}\right]$

⇒$\frac{4}{21}+\frac{16}{9}$

⇒$\frac{(4 \times 3)+(10 \times 7)}{63} \quad$ LCM of $21,9=63$

⇒$\frac{12+70}{63} .$

⇒$\frac{82}{63}=$  $\frac{19}{63}$


Question 7

(i)  $\left(\frac{-4}{9}\right)+\frac{2}{3}$ in a Rational number

(ii) $\frac{43}{89}+\left(\frac{-51}{47}\right)=\left(\frac{-51}{47}\right)+\frac{43}{89}$

(iii) $\frac{2}{7}+\frac{0}{7}=\frac{2}{7}-0+\frac{2}{7}$

(iv) $\frac{4}{11}+\left[\left(\frac{-7}{12}\right)+\frac{9}{10}\right]=\left[\frac{4}{11}+\left(\frac{-7}{12}\right)\right]+\frac{9}{10}$

(v)  $\frac{5}{9}+\left(\frac{-5}{9}\right)=0=\left(\frac{-5}{9}\right)+\frac{5}{9}$


Question 8

GIVEN

$a=\frac{-11}{27}$
$b=\frac{4}{9}$
$c=\frac{-5}{18}$

$\begin{aligned} \text { L.H.S }  a+(b+c) &=\frac{-11}{27}+\left(\frac{4}{9}+\left(\frac{-5}{18}\right)\right) \\ &=\frac{-11}{27}+\left[\frac{4 \times 2+(-5 \times 1)}{18}\right] \end{aligned}$ LCM OF $9,18=18$

$=\frac{-11}{27}+\left[\frac{8-5}{18}\right]$

$=\frac{-11}{27}+\frac{3}{18}$

$=\frac{(-11 \times 2)+(3 \times 3)}{54}$  LCM OF 27,18=54

$=\frac{-22+9}{54}$

LHS  $=\frac{-13}{54}$

R.H.S $\begin{aligned}(a+b)+c &=\left(\frac{-11}{27}+\frac{4}{9}\right)+\left(-\frac{5}{18}\right) \\ &=\frac{(-11 \times 1)+(4 \times 3)}{27}+\left(\frac{-5}{18}\right) \end{aligned}$ 
LCM OF 27, 9=27

$\begin{aligned} &=\frac{-22+9}{54} \\ \text {L.H.S } &=\frac{-13}{54} \end{aligned}$

$\begin{aligned} \text { R.H.S } \quad(a+b)+C &=\left(\frac{-11}{27}+\frac{4}{9}\right)+\left(\frac{-5}{18}\right) \\ &=\frac{(-11 \times 1)+(4 \times 3)}{27}+\left(\frac{-5}{18}\right) \end{aligned}$  

LCM OF +27,9=27

$=\frac{-11+12}{27}+\left(\frac{-5}{18}\right)$

$=\frac{1}{27}+\left(\frac{-5}{18}\right)$

$=\frac{(1 \times 2)+(-5 \times 3)}{54}$ LCM OF 27,18= 54

$\frac{2-15}{54}$

R. H.S $=\frac{-13}{54}$

∴LCH =RHS 

$a+(b+c)=(a+b)+c$

                                                                                          

Exercise 1.2


(i) $\quad 2 \frac{2}{3}=\frac{2 \times 3+2}{3}=\frac{8}{3}$

=$2 \frac{2}{3}-\left(-\frac{3}{7}\right)$

=$\frac{8}{3}-\left(-\frac{3}{7}\right)$

=$\frac{8}{3}+\frac{3}{7}$

=$\frac{(8 \times 7)+(3 \times 3)}{21} \quad$  LCM of $3,7=21$

=$\frac{56+9}{21}$

=$\frac{65}{21}$

$\frac{-4}{9}-\left(3 \frac{5}{8}\right)$

$\frac{-4}{9}-\left(\frac{29}{8}\right)$

$-\frac{4}{9}-\frac{29}{8}$

$\frac{-4 \times 8-(29 \times 9)}{72} \quad$ LCM of $9,18=72$

$-\frac{293}{72}$


(iii) $-3 \frac{1}{5}-\left(-4 \frac{7}{9}\right)$

$-\frac{16}{5}-\left(\frac{-43}{9}\right)$

$\frac{-16}{5}+\frac{43}{9}$

$\frac{(-16 \times 9)+(43 \times 5)}{45}$ LCM OF 9,15=45

$\frac{-144+215}{45}$

$\frac{71}{45}$



3. Let the Unknown number as x.

 $\begin{aligned}-\frac{5}{11}+x &=\frac{-7}{8} \\ x &=\frac{-7}{8}-\left(-\frac{5}{11}\right) \\ &=\frac{-7}{8}+\frac{5}{11} \end{aligned}$    

$=\frac{(-7 \times 11)+(8 \times 5)}{88} \quad$ LCM Of $11,8=88$

$=\frac{-77+45}{88}$

$x=\frac{-32}{88}$

$x=\frac{-4}{11}$


(ii)   let the unknown number as x.  

$\begin{aligned}-\frac{2}{7}+x &=\frac{3}{5} \\ x &=\frac{3}{5}-\left(-\frac{2}{7}\right) \\ x &=\frac{3}{5}+\frac{2}{7} \\ &=\frac{(3 \times 7)+(2 \times 5)}{35} \\ &=\frac{21+10}{35} \\ x &=\frac{31}{35} \end{aligned}$

4.  Let the Unknown number be $x$

$-4 \frac{3}{5}-x=-3 \frac{1}{2}$

$-\frac{23}{5}-x=-\frac{7}{2}$

$\begin{aligned}-\frac{23}{5} &=-\frac{7}{2}+x \\ x &=-\frac{23}{5}+\frac{7}{2} \\ &=\frac{(-23 \times 2)+(7 \times 5)}{10} \end{aligned}$      LCM OF 5,2=10 

⇒$\frac{-46+35}{10}$

x⇒$\frac{-11}{10}$


$5 .\left[\frac{-5}{7}+\left(\frac{-8}{3}\right)\right]-\left[\frac{5}{2}+\left(\frac{-11}{12}\right)\right]$

$\left[\frac{(-5 \times 3)+(-8 \times 7)}{21}\right]-\left[\frac{5 \times 6+(-11 \times 1)}{12}\right]$

$\frac{-284-133}{84}-\frac{417}{84}=\frac{-139}{28}=-\frac{139}{28} \|$


6. $\quad x=\frac{4}{9} ; \quad y=\frac{-7}{12}$

Consider

x-y =  $\frac{4}{9}-\left(-\frac{7}{12}\right)$

$=\frac{4}{9}+\frac{7}{12}$

⇒$\frac{(4 \times 4)+(7 \times 3)}{36}$               (∴LCM OF 9,12= 36)

⇒$\frac{16+21}{36}$

⇒$x-y=\frac{37}{36}$

Consider     

                y-x = $\frac{-7}{12}-\left(\frac{4}{9}\right)$

    

⇒$\frac{-7}{12}-\frac{4}{9}$

⇒$\frac{(-7 \times 3)-(4 \times 4)}{36}$         LCM of  9, 12=36

⇒$\frac{-21-16}{36}$

y-x ⇒$\frac{-37}{36}$

ஃx-y ≠ y-x

 7.  $x=\frac{4}{9} ;  \quad y=\frac{-7}{12} ; \quad z=\frac{-2}{3}$

Consider

                    $x-(y-z)=\frac{4}{9}-\left(\frac{-7}{12}-\left(\frac{-2}{3}\right)\right)$

$=\frac{4}{9}-\left(\frac{-7}{12}+\frac{2}{3}\right)$

⇒$\frac{4}{9}-\left(\frac{(-7 \times 1)+(2 \times 4)}{12}\right)$

⇒$\frac{4}{9}-\left(\frac{-7+8}{12}\right)$

⇒$\frac{4}{9}-\frac{1}{12}$

⇒$\frac{(4 \times 4)-(1 \times 3)}{36}$

=$\frac{16-3}{36}$

$x-(y-z)$  =$\frac{13}{36}$ 

       Consider       ( x-y)-z  =$\left[\frac{4}{9}-\left(\frac{-7}{12}\right)\right]-\left(\frac{-2}{3}\right)$

$=\left[\frac{4}{9}+\frac{7}{12}\right]+\frac{2}{3}$

$=\left[\frac{(4 \times 4)+(-7 \times 3)}{36}\right]+\frac{2}{3}$

$=\frac{16+21}{36}+\frac{2}{3}$

$=\frac{37}{36}+\frac{2}{3}$

$=\frac{(37 \times 1)+(2 \times 12)}{36}$

⇒$\frac{37+24}{36}$

$(x-y)-z=\frac{61}{36}$


                                ∴ $x-(y-z) \neq(x-y)-z


8

i) ⇒$\frac{2}{3}-\frac{4}{5}$

$\frac{(2 \times 5)-(4 \times 3)}{15}$     LCM = 3,5 = 15

⇒$\frac{10-12}{15}$

⇒$\frac{-2}{5}$   It is a Rational Number

               So. givew statement is False  

(ii)true

              $\frac{-5}{7}+\frac{5}{7}=0$                              

Exercise 1.3


1.

(i)⇒$\frac{6}{-7} \times \frac{14}{30}$

=$\frac{6 \times 14}{-7 \times 30}$

=$-\frac{84}{210}$

=$\frac{-2}{5}$


(ii)  $6 \frac{2}{3} \times 1 \frac{2}{7}$

⇒$\frac{20}{3} \times \frac{9}{7}$

⇒$\frac{20 \times 9}{3 \times 7}$

=$\frac{180}{21}$

=$\frac{60}{7}$


(iii)  $\frac{25}{-9} \times \frac{-3}{10}$

=$\frac{25 \times(-3)}{-9 \times 10}$

=$\frac{-75}{-90}$

=$\frac{-5}{-6}$

=$\frac{5}{6}$


2. 

i) To verify commutative property of multiplication, we have 

to show    $\frac{4}{5} \times \frac{-7}{8}=\frac{-7}{8} \times \frac{4}{5}$

 L.H.S ⇒ $\frac{4 \times-7}{5 \times 8}$

⇒ $\frac{-28}{40}$

L.H.S ⇒ $\frac{-7}{10}$

R.H.S⇒ $\frac{-7}{8} \times \frac{4}{5}$

⇒$\frac{-7 \times 4}{8 \times 5}$

⇒$\frac{-28}{40}$

R.H.S⇒ $\frac{-7}{10}$

           ∴ L.H.S =R.H.S

           ∴ Commutative property of multiplication is verified 


3. $\quad \frac{3}{5} \times\left(\frac{-4}{7} \times \frac{-8}{9}\right)=\left(\frac{3}{5} \times \frac{-4}{7}\right) \times \frac{-8}{9}$

L.H.S $=\frac{3}{5} \times\left(\frac{-4}{7} \times \frac{-8}{9}\right)$

$=\frac{3}{5} \times\left(\frac{-4 \times(-8)}{7 \times 9}\right)$

$=\frac{3}{5} \times\left(\frac{32}{63}\right)$

$=\frac{3 \times 32}{5 \times 63}$

$=\frac{96}{315}$

L.H.S⇒ $\frac{32}{165}$

$\begin{aligned} \text { R.H.S } &=\left(\frac{3}{5} \times \frac{-4}{7}\right) \times\left(\frac{-8}{9}\right) \\ &=\left(\frac{-3 \times(-4)}{5 \times 7}\right) \times\left(\frac{-8}{9}\right) \\ &=\frac{-12}{35} \times \frac{-8}{9} \\ &=\frac{-12 \times(-8)}{35 \times 9} \\ &=\frac{96}{315} \\  R.H.S &=\frac{32}{105} \end{aligned}$ 

               L.H.S=R.H.S, HENCE PROVED

         ∴This law is called assoiative property of multiplication 


ii) $\frac{5}{9} \times\left(\frac{-3}{2}+\frac{7}{5}\right)=\frac{5}{9} \times \frac{-3}{2}+\frac{5}{9} \times \frac{7}{5}$

       L.H.S $=\frac{5}{9} \times\left(\frac{-3}{2}+\frac{7}{5}\right)$

$=\frac{5}{9} \times\left(\frac{(-3 \times 5)+(7 \times 2)}{10}\right) \quad$ LCM of $2,5=10$

$=\frac{5}{9} \times\left(\frac{-15+14}{10}\right)$

$=\frac{5}{9} \times\left(\frac{-1}{10}\right)$

L.H.S= $\frac{-1}{18}$

R.H.S= $\left(\frac{5}{9} \times \frac{-3}{2}\right)+\left(\frac{5}{9} \times \frac{7}{5}\right)$

 $\left(\frac{5 \times(-3)}{18}\right]+\left[\frac{5 \times 7}{9 \times 5}\right]$

  $=\left[\frac{5 \times(-3)}{18}\right]+\left[\frac{5 \times 7}{9 \times 5}\right]$

$=\frac{-15}{18}+\frac{35}{45}$

$=\frac{(-15 \times 5)+(35 \times 2)}{90}$

$=\frac{-75+70}{90}$

$=\frac{-5}{90}$

R.H.S $=\frac{-1}{18}$

                    L.H.S = R.H,S, Hence proved 

                This law is called disreibutive law of multiplication over addition 


4. 

   i)  12 reciprocal of 12 =$\frac{1}{12}$

          ∴ $\frac{1}{12}$ is multiplicative  inverse of 12

$\begin{array}{ll}\text { ii\} } & \text { reciprocal of } \frac{2}{3}=\frac{3}{2} \\ \therefore & \frac{3}{2} \text { is multipl:cative inverse of } \frac{2}{3}\end{array}$

iii) $\quad$ reciprocal of $\frac{-4}{7}=\frac{7}{-4}$ or  $-\frac{7}{4}$

$\therefore \frac{-7}{4}$ is multiplicative inverse of $\frac{-4}{7}$

iv) $\frac{-3}{8} \times\left(\frac{-7}{13}\right)=\frac{-3 \times(-7)}{8 \times 13}=\frac{21}{104}$

reciprocol of $\frac{21}{104}$ in $\frac{104}{21}$

       ∴ $\frac{104}{21}$ in multiplicative inverse of $\frac{-3}{8} \times\left(\frac{-7}{13}\right)$

5.

i) $\frac{2}{5} \times \frac{-3}{7}-\frac{1}{14}=\frac{3}{7} \times \frac{3}{5}$

=$\frac{2 \times(-3)}{5 \times 7}-\frac{1}{14}-\frac{(3 \times 3)}{7 \times 5}$

=$\frac{-6}{35}-\frac{1}{14}-\frac{9}{35}$

⇒$\frac{(-6 \times 2)-(1 \times 5)-(9 \times 2)}{70} \quad$ LCM OF $35,14,35=70$

=$\frac{-12-5-18}{70}$

=$\frac{-35}{70}$

=$\frac{-1}{2}$

ii) $\frac{8}{9} \times \frac{4}{5}+\frac{5}{6}-\frac{9}{5} \times \frac{8}{9}$

=$\frac{(8 \times 4)}{9 \times 5}+\frac{5}{6}-\frac{(9 \times 8)}{(5 \times 9)}$

=$\frac{32}{45}+\frac{5}{6}-\frac{72}{45}$

=$\frac{(32 \times 2)+(5 \times 15)-(72 \times 2)}{90}$    L.C.M of 45,6,45= 90

=$\frac{64+75-144}{90}$

⇒$\frac{64+75-144}{90}$

=$\frac{-5}{90}$

⇒ $\frac{-1}{18}$

iii $\rangle \quad \frac{-3}{7} \times \frac{14}{15} \times \frac{7}{12} \times\left(\frac{-30}{35}\right)$

=$\frac{-3 \times 14 \times 7}{7 \times 15 \times 12} \times\left(\frac{-30}{35}\right)$

=$\frac{-294}{1260} \times\left(\frac{-30}{35}\right)$

=$\frac{-294 \times(-30)}{1260 \times 35}$

$\frac{1}{5}$ 

6. $P=\frac{-8}{27}, q=\frac{3}{4}, \quad \ r=\frac{-12}{15}$

i) $P{}(q \times \ r)=(p \times q) \times \ r$

L.H.S⇒P x (q x r) 

$=\frac{-8}{27} \times\left(\frac{3}{4} \times\left(\frac{-12}{15}\right)\right)$

$=\frac{-8}{27} \times\left(\frac{3 \times(-12)}{4 \times 15}\right)$

$=\frac{-8}{27} \times\left(\frac{-36}{60}\right)$

$=\frac{-8 \times(-36)}{27 \times 60}$

$\begin{aligned} \ L \cdot H \cdot S &=\frac{8}{45} \\ R \cdot H \cdot S &=(P \times q) \times \ r \\ &=\left(\frac{-8}{27} \times \frac{3}{4}\right) \times\left(\frac{-12}{15}\right) \\ &=\left(\frac{-8 \times 3}{27 \times 4}\right) \times\left(\frac{-12}{15}\right) \\ &=\frac{-24}{108} \times\left(\frac{-12}{15}\right) \\ &=\frac{-24 \times-12}{108 \times 15} \end{aligned}$ 

R.H.S $=\frac{8}{45}$

                 ∴ L.H.S $=$ R.H.S, Hence verified

ii)

 $\begin{aligned} P \times(q-\ r) &=P \times q-P \times r . \\ L . H \cdot S &=P \times(q-\ r) \\ &=\frac{-8}{27} \times\left(\frac{3}{4}-\left(\frac{-12}{15}\right)\right) \\ &=\frac{-8}{27} \times\left(\frac{3}{4}+\frac{12}{15}\right) \\=& \frac{-8}{27} \times\left(\frac{(3 \times 15)+(12 \times 4)}{60}\right) \\=& \frac{-8}{27} \times\left(\frac{45+48}{60}\right) \\=& \frac{-8}{27} \times \frac{93}{60} \\=& \frac{-8}{27} \times \frac{31}{20} \end{aligned}$ 

L.H.S $=\frac{-62}{135}$

   R.H.S $=-p \times q-P \times \ r$

⇒$\frac{-8}{27} \times \frac{3}{4}-\left(\frac{-8}{27} \times\left(\frac{-12}{15}\right)\right.$

⇒$\frac{-8 \times 3}{27 \times 4}-\left(\frac{-8 \times(-12)}{27 \times 15}\right)$

⇒$\frac{-24}{108}-\frac{96}{405}$

⇒$-\frac{2}{9}-\frac{32}{135}$

⇒$\frac{(-2 \times 15)-(32 \times 1)}{135}$

$=\frac{-30-32}{135}$

$R \cdot H \cdot S=\frac{-62}{135}$ 

                $\therefore  {LHS}=$ RHS; Hence veritied.

7. 

i) $\frac{2}{3} \times \frac{-4}{5}$ is a Rational number

ii) $\frac{54}{81} \times \frac{-63}{108}=\frac{-63}{108} \times \frac{54}{81}$

iii) $\frac{4}{5} \times 1=\frac{4}{5}=1 \times \frac{4}{5}$

iv) $\frac{5}{-12} \times \frac{-12}{5}=1=\frac{-12}{5} \times \frac{5}{-12}$

v) $\frac{3}{7} \times\left(\frac{-2}{8} \times \frac{5}{9}\right)=\left(\frac{3}{7} \times \frac{-2}{8}\right) \times \frac{5}{9}$

vi $\rangle \quad \frac{-8}{9} \times\left[\frac{4}{13}+\frac{5}{17}\right]=\left(\frac{-8}{9} \times \frac{4}{13}\right)+\left(\frac{-8}{9} \times \frac{5}{17}\right)$

(vii) $\quad \frac{-6}{13} \times\left[\frac{8}{9}-\frac{4}{7}\right]=\frac{-6}{13} \times \frac{8}{9}-\left(\frac{-6}{13} \times \frac{4}{7}\right)$

Viii) $\quad \frac{16}{25} \times 0=0$

ix) Not detin-ed

$\begin{array}{ll}\text { x) } & 1,-1 \\ \text { xi }\rangle & x^{2} \\ \text { xii) } & 1 \\ \text { xiii)} & \text { negative }\end{array}$

8.   NO,   

= $\frac{4}{5} \times\left(-1 \frac{1}{4}\right)$

=$\frac{4}{5} \times\left(\frac{-5}{4}\right)$

=$-1 \neq 1$

             $\therefore-1 \frac{1}{4}$ is not multiplicative inverse of $\frac{4}{5}$

              $\therefore \quad$ mutiplicative inverse of $\frac{4}{5}$ should be $\frac{5}{4}$

 

9.

i)  $\left\{\frac{7}{5} \times\left(\frac{-3}{12}\right)\right\}+\left\{\frac{7}{5}+\frac{5}{12}\right\}$

=$\frac{7}{5} \times\left\{\frac{-3}{12}+\frac{5}{12}\right\}$ (-i distributive property)

=$\frac{7}{5} \times\left\{\frac{-3+5}{12}\right\}$

=$\frac{7}{5} \times \frac{2}{12}$

=$\frac{7}{30}$

ii) $\left\{\frac{9}{16} \times \frac{4}{12}\right\}+\left\{\frac{9}{16} \times\left(\frac{-3}{9}\right)\right\}$

$\frac{9}{16} \times\left\{\frac{4}{12}+\left(\frac{-3}{9}\right)\right\} \quad(\because$ distributive property $)$

$\frac{9}{16} \times\left\{\frac{1}{3}+\left(\frac{-1}{3}\right)\right\}$

$\frac{9}{16}\left\{\frac{1}{3}-\frac{1}{3}\right\}$

$\frac{9}{16} \times 0=0$

10. Additive inverse of $9=-9$

Multiplicative inverse of $9=\frac{1}{9}$

$\begin{aligned} \text { Required Sum } &=-9+\frac{1}{9} \\ \text =-\frac{81+1}{9} \\ &=-\frac{80}{9} \\ {}  &=-8 \frac{8}{9} \end{aligned}$

11. Additive inverse of $\frac{-2}{7}=\frac{2}{7}$ 

Multiplicative inverse ot $\frac{-2}{7}=\frac{-7}{2}$

Required product $=\frac{2}{7} \times\frac{-7}{2}$

$=-1$  

                                                                    

Exercise 1.4

 
Q1.

i) $-\frac{3}{7} \div 4$

=$-\frac{3}{7} \div \frac{4}{1}$

=$\frac{-3}{7} \times \frac{1}{4}$

=$\frac{-3 \times 1}{7 \times 4}$

=$\frac{-3}{28}$

ii)  $4 \frac{5}{8} \div\left(\frac{-4}{9}\right)$

=$\frac{37}{8} \div\left(\frac{-4}{9}\right)$

=$\frac{37}{8} \times\left(\frac{9}{-4}\right)$

=$\frac{37 \times 9}{8 \times(-4)}$

=$-\frac{333}{32}$

=$-10 \frac{13}{32}$

iii) $\frac{8}{9} \div \frac{-3}{5}$

=$\frac{-8}{9} \times \frac{5}{-3}$

=$\frac{-8 \times 5}{9 x-3}$

=$\frac{-40}{-27}$

=$\frac{40}{27}=1 \frac{13}{27}$
 
Q2.

 i) true 

ii)false 

iii)false 

iv)true 

v)ture 

vi)false     

Q3. let unknown number be $x$                                                                      

⇒$x \times 2 \frac{4}{9}=\frac{-11}{12}$

⇒$x \times \frac{22}{9}=\frac{-11}{12}$

$x=\frac{-11}{12}$ x $\frac{22}{9}$

⇒$\frac{-11}{12} \times \frac{9}{22}$

$x=\frac{-3}{8}$

    Other number $=\frac{-3}{8}$

4. Let unknown number be x

$x \times\left(\frac{-7}{12}\right)=\frac{5}{14}$

$x=\frac{5}{14} \div\left(\frac{-7}{12}\right)$

$=\frac{5}{14} \times \frac{12}{-7}$

$=\frac{5 \times 12}{14 \times(-7)}$

$=-\frac{60}{98}$

$=\frac{-30}{49}$

5. Let unkonw number be x 

$\frac{-3}{x}=\frac{-9}{13}$

$x=-\frac{3}{1} \div\left(\frac{-9}{13}\right)$

$=\frac{-3}{1} \times \frac{13}{-9}$

$x=\frac{13}{3}=4 \frac{1}{3}$

6.  

 Sum of number = $\frac{-13}{8}+\frac{5}{12}$

$=\frac{(-13 \times 3)+(5 \times 2)}{24} \quad$ LCM of $812=24$

⇒$\frac{-39+10}{24}$

⇒$\frac{-29}{24}$

sum of numbers = $\frac{-29}{24}$

difference of numbers= $\frac{(-13 \times 3)-(5 \times 2)}{24}$

$\frac{-39-10}{24}$

Difference of numbers $=\frac{-49}{24}$

Requried product = sum of numbers ÷ difference of numbers 

$\begin{aligned} &=\frac{-29}{24} \div\left(-\frac{49}{24}\right) \\=& \frac{-29}{24} \times \frac{24}{-49} \\ &=\frac{29}{49} \end{aligned}$

$\begin{aligned} 7 . \quad \text { Sum of two numbers } &=\frac{8}{3}+\frac{4}{7} \\ &=\frac{(8 \times 7)+(3 \times 4)}{21} \text { LCM Of } 3,7=21 \\ &=\frac{56+12}{21} \\ \text { Sum of two numbers } &=\frac{68}{21} \end{aligned}$

$\begin{aligned} \text { Product of given numbers } &=\frac{-3}{7} \times \frac{14}{9} \\ &=\frac{-2}{3} \end{aligned}$

$\begin{aligned} \text { Required product } &=\frac{\text { Sum of } \frac{8}{3} \text { and } \frac{4}{7}}{\text { product of }\frac{3}{1} \text { and } \frac{14}{9}} \\ &=\frac{68}{21} \div\left(\frac{-2}{3}\right) \\ &=\frac{68}{21} \times \frac{3}{-2} \\ &=\frac{-34}{7} \end{aligned}$

8. Givew $\quad P=\frac{-3}{2}, \quad q=\frac{4}{5}, \quad \ r=\frac{-7}{12}$

$(p \div q) \div r=p \div(q \div \ r)$

$\begin{aligned} \text { L.H.S } &=(p \div q) \div r \\ &=\left(\frac{-3}{2} \div \frac{4}{5}\right) \div\left(\frac{-7}{12}\right) \\ &=\left(\frac{-3}{2} \times \frac{5}{4}\right) \div\left(\frac{-7}{12}\right) \\ &=\left(\frac{-15}{8}\right) \div\left(-\frac{7}{12}\right) \\ &=\frac{-15}{8} \times \frac{12}{-7} \\ &=\frac{-15}{8} \times \frac{12}{-7} \end{aligned}$

$\begin{aligned} \text { L.H.S } &=+\frac{45}{7} \\ \text { R.H.S } &=p \div(q \div \ r) \\ &=\frac{-3}{2} \div\left(\frac{4}{5} \div\left(\frac{-7}{12}\right)\right) \\ &=\frac{-3}{2} \div\left(\frac{4}{5} \times \frac{12}{-7}\right) \\ &=\frac{-3}{2} \div\left(-\frac{48}{35}\right) \\ &=\frac{-3}{2} \times-\frac{35}{48} \\ R \cdot H S &=\frac{35}{32} \\ L \cdot H \cdot S \neq R \cdot H \cdot S \\(p \div q) \div r \neq P \div(q \div \tau) \end{aligned}$

                                                                      

                                                                      

Exercise 1.5


  1. 

i) $\frac{11}{4}=2.75$  <diagram to be added>

ii) $4 \frac{3}{5}=\frac{23}{5}=4.6$  

                                                 <diagram to be added>

iii $\}\frac{-9}{7}=-1 \frac{2}{7}$

                                                    <diagram to be added>

iv) $\frac{-2}{-5}=\frac{2}{5}=0.4$

                                                     <diagram to be added>

2.
    i)  $A=\frac{3}{7}$

$B=\frac{7}{7}=1$

$C=\frac{8}{7}$

$D=\frac{12}{7}$

$E=\frac{13}{7}$       
                                              
ii) $\quad P=\frac{-3}{8}$                                                        
 
$Q=\frac{-4}{8}=-\frac{1}{2}$

$R=\frac{-7}{8}$

$S=\frac{-11}{8}$

$T=\frac{12}{8}=\frac{-3}{2}$

3. $\frac{-3}{7} \quad \frac{-3}{10}$ $\frac{-5} {20}\frac{-2}{10}$ $\frac{-3}{20} \frac{-1}{10}\frac{-1}{20}$ $0 \frac{1}{20} \frac{1}{10} \frac{3}{20} \frac{2}{10} \frac{5}{20} \frac{3}{10}$ 

           $\begin{array}{ccccccc}\frac{7}{20} & \frac{4}{10} & \frac{9}{20} & \frac{5}{10} & \frac{11}{20} & \frac{6}{10} & \frac{2}{3}\end{array}$

4. <DIAGRAM TO BE ADDED>


5 .<DIAGRAM TO BE ADDED>

6) $\quad 1,2,3,4,5,6,7,8,9,10$

7) $\quad-5,-6,-7,-8,-9$

8) $-\frac{7}{3}$   (Numeritor  is greater then denominator (numerically)

$-\frac{7}{3}<-1 ;-\frac{5}{11}, \frac{-1}{2}, \frac{-4}{9}>-1 .$

$\therefore \quad \frac{-7}{3}$ is difrerert among all rational numbers 

                                                                     

Exercise 1.6

 1.
 $\begin{aligned} \text { Total fruits } &=20 \mathrm{~kg} \\ \text { oranges } &=7 \frac{1}{6} \mathrm{~kg} \\ \text { Apples } &=8 \frac{2}{3} \mathrm{~kg} \end{aligned}$

let grapes $=x$

$7 \frac{1}{6}+8 \frac{2}{3}+x=20$

$\frac{43}{6}+\frac{26}{3}+x=20$

$\frac{(43 \times 1)+(26 \times 2)}{6}+x=20$

$\frac{43+52}{6}+x=20$

$\begin{aligned} \frac{95}{6}+x &=20 \\ x &=\frac{20}{1}-\frac{95}{6} \\ x &=\frac{120-95}{6} \\ x &=\frac{25}{6} \mathrm{~kg} \end{aligned}$

                 $\therefore$ Beg contain $4 \frac{1}{6}$ kg of grapes.

2 . Total population of cily $=6,63,432$

Adult male $=\frac{1}{2}$ of total population

Adult females $2 \frac{1}{3}$ of total population

 Adult male + Adult female terms + children = Total city

$\frac{1}{2}(6,63,432)+\frac{1}{3}(663432)+$ Children $=6163432$

$\frac{5}{6}(663432)+$ children $=663432$

children $=663432\left(1-\frac{5}{6}\right)$

$=663432 \times \frac{1}{6}$

Children $=110572$

no. of children in city $=110,572$

3.  Total votes $=30$
no. of votes for Mr. $x=\frac{2}{5}$ of $30=\frac{2}{5}(30)$

no.ot votes for $M r \cdot z=\frac{1}{3} (30)$

Let Mr.Y votes $=x$

=$\therefore \quad \frac{2}{5}(30)+x+\frac{1}{3}(30)=30$
=$12 \ +x+10=30$
=$x+22=30$
=$x=30-22$
$x=8$

NO. of votes for mr. y = 8

4. Total earnings $=₹ 100$

Rupees spent on food $=₹ 14 \frac{2}{7}$

Rupees spent on petrol $=₹ 30 \frac{2}{3}$

Let Savingson that day $=x$

$14 \frac{2}{7}+30 \frac{2}{3}+x=100$

$\frac{100}{7}+\frac{92}{3}+x=100$

$\begin{aligned}\left(\frac{100 \times 3)+(92 \times 7)}{21}\right.&+x=100 \\ x &=100-\frac{944}{21} \end{aligned}$

$x=\frac{1156}{21}=55 \frac{1}{21}$

$\therefore$ savings $=₹ 55 \frac{1}{21}$

5. $\quad$ Total students $=400$
    
no.of $\operatorname{girls} =130$

no. of boys appeared for exam $=400-130$$=270$

no.ot boys passed in exam $=\frac{2}{3}(270)$  $=180$

no. of boys failed  in exam $=$ Total boys - pessed boys
 
=270-180
=90 
$\therefore$ no. of boys failed in exam $=90$.

6.speed of $\mathrm{Car} \ =40 \frac{2}{3} \mathrm{Km} / \mathrm{h}$
time $=\frac{9}{10} \mathrm{hr}$

distance travelled car = speed xtime 

$=40 \frac{2}{3} \times \frac{9}{10}$

$=\frac{122}{3} \times \frac{9}{10}$

$=\frac{183}{5}$

$=36 \frac{3}{5} \mathrm{~km}$
 
7. Side of square = $5 \cdot \frac{7}{9} m$

$S=\frac{52}{9} m$

$\begin{aligned} \text { Area of square } &=S^{2} \\ &=\frac{52}{9} \times \frac{52}{9} \\ &=\frac{2704}{81} \\ \text { Area of square } &=33 \frac{31}{81} \mathrm{~m}^{2} \end{aligned}$

8. perimeter of rectangle = $15 \frac{3}{7} m$

length of rectangle (l) = $4 \frac{2}{7} m$

perimeter = 2 (l+b)

=$15 \frac{3}{7}=2\left(4 \frac{2}{7}+b\right)$

=$\frac{108}{7}=2\left(\frac{30}{7}+b\right)$

=$\frac{3 b}{7}+b=\frac{108}{7 \times 2}$

$\frac{30 }{7}+b=\frac{108}{7 \times 2}$

$\frac{30}{7}+b=\frac{54}{7}$

$b=\frac{54}{7}-\frac{30}{7}$

$b=\frac{24}{7}$

$b=3 \frac{3}{7} m$

9. Total length of rope = $325 \frac{4}{5} m$

Rahul cutoff $150 \frac{3}{5} \mathrm{~m}$ of rope

Remaining length of rope = $325 \frac{4}{5}-150 \frac{3}{5}$

$=\frac{1629}{5}-\frac{753}{5}$

$=\frac{876}{5} \mathrm{~m}$

$=\frac{876}{5} \mathrm{~m}$

Rahul made remaining rope into 3 equal parts 

$\begin{aligned} \therefore \text { length  of each part } &=\frac{876}{5} \div \frac{3}{1} \\ &=\frac{876}{5} \times \frac{1}{3}=\frac{292}{5}=58 \frac{2}{5} \mathrm{~m} \\ \therefore \text { length of each part } & \text { part }=58 \frac{2}{3} \mathrm{~m} \end{aligned}$


10.  $3 \frac{1}{2}$ liters of petrol cost= ₹ $270 . \frac{3}{8}$

cost for 1 liter of petrol $=\frac{270 \frac{3}{8}}{3 \frac{1}{2}}$

$=\frac{2163}{8} \times \frac{2}{7}$

Cost for 1 liter of petrol $=\frac{309}{4}$

cost for 4 liters of petrol $=\frac{309}{4} \times 4$

$\therefore$ cost for 4 liters of petrol $= ₹ 309$

11.
Ramesh Spends $\frac{3}{8}$ of income on food $=\frac{3}{8} \times 40000$

=15000

Remaining money $=40000-15000$

=25000


remaining spend $\frac{1}{5}$ of remaining on LIC 

$=\frac{1}{5}(25000)$

$=5000$

Remainine money $=25000-195000$
$=20000$

other expenses are $\frac{1}{2} of$ remaining money


= $=\frac{1}{2} \times 20000$


= 10,000

$\begin{aligned} \text { Remaining money } &=20,000-10,000 \\ &=10,0001\end{aligned}$

12. Let total bill Amount as $x$
Amount paid A will be $=\frac{x}{2}$
Amount paid $B_{1} C_{1} D$ will be $=x-\frac{x}{2}$

$=\frac{x}{2}$

given bill is shared equally among three 

 let bill paid by each one = y 

$y+y+y=\frac{x}{2}$

$3 y=\frac{x}{2}$

$y=\frac{x}{6}$

$\therefore$ Each paid $\frac{1}{6}$ th of total bill.


13.
       Let total no. of student s = х
        
       no. of studentsof school come by car $=\frac{2}{5} x$

      no.ot Students of school come by bus e $\frac{1}{4} x$

    no of students of  school come by walk $=x-\left(\frac{2}{5} x+\frac{1}{4} x\right)$

 = x- $\left(\frac{(2 \times  4)+(1 \times 5)}{20} \cdot x\right)$
$=x-\frac{13}{20} \cdot x$
 no.ot students of school come by walk $=\frac{7}{20} \cdot x$
no.ot students of school come by walk on their own
\begin{aligned} &=\frac{1}{3} \ of \left(\frac{7}{20} x\right) \\ &=\frac{7}{60} \cdot x \end{aligned}
  $\begin{aligned} \therefore \quad \frac{7}{60} \cdot x &=224 \\ x &=\frac{224}{1} \times \frac{60}{7} \\ x &=1920 \\ \text { Total Students in school }=1920 \end{aligned}$ 

14. Total cost of Room $= ₹ 60,000$

let Mother's contribution $= ₹ x$

Elder son contribution $= ₹ \frac{3}{8} x$

younger son contribution $= ₹ \frac{1}{2} x$

$\begin{aligned} \therefore \quad x+\frac{3}{8} x+\frac{1}{2} x &=60,000 \\ \frac{( 8)+(3)+(4)}{8} \cdot x &=60,000 \\ \frac{15}{8} \cdot x &=60000 \\ x &=60000 \times \frac{8}{15} \\ x &=32000 \end{aligned}$

; Mother's contribution 2232,000 

; Elder son's contribution e $\frac{3}{8} \times 32000=₹ 12,000$

; Younger son's Contribution = $\frac{1}{2} \times 32000=₹ 16,000$ 

15. Total students $=56$

let no.of girls $=x$

no.ot boys $=\frac{2}{5} x$

$\therefore \quad x+\frac{2}{5} x=56$

$\frac{7}{5} x=56$

$x=\frac{56}{1} \times \frac{5}{7}$

$x=40$

$\therefore$ no.ot girls $=40$
$\therefore$ no. ot boys $=56-40=16$

16.  Let  money posses by man $2 x$

$\frac{1}{10}$th money donated to school $=\frac{x}{10}$

Remaining money $=x-\frac{x}{10}=\frac{9 x}{10}$

$\frac{1}{6}$th remaining money  $=\left(\frac{9 x}{10}\right) \times \frac{1}{6}$

Remaining money $=\frac{9 x}{10}-\frac{9 x}{10 \times 6}$

$=\frac{45 x}{60}$

Now, man distributed This money equally to hin three sons and each one gets $=₹50,000$

$\frac{45 x}{60} \div 3=50,000$

$\frac{45 x}{60} \times \frac{1}{3}=50000$

$\frac{3}{4} x \times \frac{1}{8}=50000$

$x=50000 \times 4$

$x=2,00,000$

17. Let a number be 'x'

$\frac{1}{4}$ of a number is added to $\frac{1}{3}$ of number

$\frac{x}{4}+\frac{x}{3}$ is 15 greater thaw half of  number

$\begin{aligned} \frac{x}{4}+\frac{x}{3}=15 &+\frac{x}{2} \\ \frac{7 x}{12}=15 &+\frac{x}{2} \\ \frac{7 x}{12}-\frac{x}{2} &=15 \\ \frac{x}{12} &=15 \\ x &=15 \times 12 \\ x &=180 \end{aligned}$

18. Let the number be ' $x$ '

$\frac{x}{1} \div \frac{4}{5}=36+\left(x+\frac{4}{5}\right)$

$\frac{5 x}{4}=36+\frac{4 x}{5} .$

$\frac{5 x}{4}-\frac{4 x}{5}=36$

$\frac{(5 \times 5)-(4 \times 4)}{20} \cdot x=36$

$\frac{25-16}{20} \cdot x=36$

$\frac{9}{20} \cdot x=36$

$x=\frac{36}{9} \times 20$

$x=80$

$\therefore$ The given number is 80


























3.$\frac{-4}{3}+\frac{3}{7}=\frac{3}{7}+\left(\frac{-4}{3}\right)$





x2

x2













0 comments:

Post a Comment