Exercise 1.1
Question 1
(i) $\frac{4}{7}+\frac{5}{7}$
⇒$\frac{4+5}{7}$
⇒$\frac{9}{7}$
(ii) $\frac{7}{-13}$ and $\frac{4}{-13}$
⇒$\frac{7}{-13}+\frac{4}{-13}$
⇒$\frac{7\times (-1)}{-13 \times (-1)}+\frac{4\times (-1)}{-13\times (-1)}$ Make denominator as +ve number
⇒$\frac{-7}{13}+\frac{-4}{13}$
⇒$\frac{-7+(-4)}{13}=\frac{-11}{13}$
Question 2
To verify $\frac{5}{11}+4 \frac{3}{9}$
$\frac{5}{11}+\frac{39}{9}$
$\frac{5 \times 9+39 \times 11}{99}$ LCM of 11, 9 = 99
⇒$\frac{45+429}{99}$
⇒$\frac{474}{99}=\frac{158}{33}$
(ii) $\frac{-4}{9}+2 \frac{12}{13}$
⇒$\frac{-4 \times 13+38 \times 9}{117}$ L.C.M of 9 , 13=117
⇒$\frac{-52+342}{17}$
⇒$\frac{290}{117}$
Question 3
To verify the commutative property of addition, we have to
SHOW
⇒$\frac{-4}{3}+\frac{3}{7}=\frac{3}{7}+\left(\frac{-4}{3}\right)$
L.H.S⇒$\frac{-4}{3}+\frac{3}{7}$
⇒$\frac{-4 \times 7+3 \times 3}{21}$ LCM OF 3,7 = 21
⇒$\frac{-28+9}{21}$
⇒LCM = $\frac{-19}{21}$
⇒RHS = $\frac{3}{7}+\left(\frac{-4}{3}\right)$
⇒$\frac{3 \times 3+(-4) \times 7}{21} \quad \mathrm{LCM}$ of $3,7=21$
⇒RHS = $\frac{9-28}{21}$
∴ LHS = RHS
⇒$\frac{-4}{3}+\frac{3}{7} a=\frac{3}{7}+\left(\frac{-4}{3}\right)$
(ii) To verify commutative law of addition, we have
to show $\left(\frac{-2}{-5}\right)+\frac{1}{3}=\frac{1}{3}+\left(\frac{-2}{-5}\right)$
LHS ⇒$\frac{-2}{-5}+\frac{1}{3}$
⇒$\frac{-2 x(-1)}{-5 x(-1)}+\frac{1}{3} \quad$ Make denominator +ve number
⇒$\frac{2}{5}+\frac{1}{3}$
⇒$\frac{2 \times 3+1 \times 5}{15} \quad$ Lcm OF $5,3=15$
⇒$\frac{6+5}{15}$
⇒LCM $=\frac{11}{15}$
RHS ⇒
⇒ $=\frac{1}{3}+\frac{2}{5}$
$=\frac{1 \times 5+2 \times 3}{15} \cdot$ LCM of $3,5=15$
$=\frac{5+6}{15}$
R.H.S $=\frac{11}{15}$
LHS = RHS
$\left(\frac{-2}{-5}\right)+\frac{1}{3}=\frac{1}{3}+\left(\frac{-2}{-5}\right)$
∴Commutative law of addition i verified
(iii) $\frac{9}{11}$ and $\frac{2}{13}$
To verity the commutative show of addition, we have to
show $\quad \frac{9}{11}+\frac{2}{13}=\frac{2}{13}+\frac{9}{11}$
⇒L.H.S $=\frac{9}{11}+\frac{2}{13}$
⇒$=\frac{(9 \times 13)+(2 \times 11)}{143} \quad$ LCM OF $11,13=143$
⇒$=\frac{117+22}{143}$
⇒LCM $=\frac{139}{143}$
⇒R.H.S $=\frac{2}{13}+\frac{9}{11}$
$=\frac{(2 \times 10)+(9 \times 13)}{143} \mathrm{LCM}$ of $13,11=143$
⇒$=\frac{22+117}{143}$
RHS $=\frac{139}{143}$
⇒L.H.S $=$ R.H.S
$\frac{9}{11}+\frac{2}{13}=\frac{2}{13}+\frac{9}{11}$
∴ Commutative law of addition is verified
Question 4
Question 5
Question 6
⇒$\left[\frac{4}{5}+\left(\frac{-7}{5}\right)\right]+\left[\frac{11}{7}+\left(\frac{-2}{7}\right)\right]$
(Using Commutative and associativity of addition)
⇒$\left[\frac{4-7}{5}\right]+\left[\frac{11-2}{7}\right]$
⇒$\left[\frac{-3}{5}\right]+\left[\frac{9}{7}\right]$
⇒$\frac{(-3 \times 7)+(9 \times 5)}{35} \quad$ LCM of $5,7=35$
⇒$\frac{-21+45}{35}=\frac{24}{35}$
(ii) $\frac{3}{7}+\frac{4}{9}+\left(\frac{-5}{21}\right)+\frac{2}{3}$
⇒$\left[\frac{3}{7}+\left(\frac{-5}{21}\right)\right]+\left[\frac{4}{9}+\frac{2}{3}\right]$
⇒(By using the commutative and associativity of addition)
⇒$\left[\frac{(3 \times 3)+(-5 \times 1)}{21}\right]+\left[\frac{4 \times 1+2 \times 3}{9}\right] \quad \begin{array}{l}\text { LCM OF } 7,21=21 \\ \text { LCM OF } 9,3=9\end{array}$
⇒$\left[\frac{9-5}{21}\right]+\left[\frac{4+6}{9}\right]$
⇒$\frac{4}{21}+\frac{16}{9}$
⇒$\frac{(4 \times 3)+(10 \times 7)}{63} \quad$ LCM of $21,9=63$
⇒$\frac{12+70}{63} .$
⇒$\frac{82}{63}=$ $\frac{19}{63}$
Question 7
(iv) $\frac{4}{11}+\left[\left(\frac{-7}{12}\right)+\frac{9}{10}\right]=\left[\frac{4}{11}+\left(\frac{-7}{12}\right)\right]+\frac{9}{10}$
(v) $\frac{5}{9}+\left(\frac{-5}{9}\right)=0=\left(\frac{-5}{9}\right)+\frac{5}{9}$
Question 8
Exercise 1.2
x⇒$\frac{-11}{10}$
$5 .\left[\frac{-5}{7}+\left(\frac{-8}{3}\right)\right]-\left[\frac{5}{2}+\left(\frac{-11}{12}\right)\right]$
$\left[\frac{(-5 \times 3)+(-8 \times 7)}{21}\right]-\left[\frac{5 \times 6+(-11 \times 1)}{12}\right]$
$\frac{-284-133}{84}-\frac{417}{84}=\frac{-139}{28}=-\frac{139}{28} \|$
6. $\quad x=\frac{4}{9} ; \quad y=\frac{-7}{12}$
Consider
x-y = $\frac{4}{9}-\left(-\frac{7}{12}\right)$
$=\frac{4}{9}+\frac{7}{12}$
⇒$\frac{(4 \times 4)+(7 \times 3)}{36}$ (∴LCM OF 9,12= 36)
⇒$\frac{16+21}{36}$
⇒$x-y=\frac{37}{36}$
Consider
y-x = $\frac{-7}{12}-\left(\frac{4}{9}\right)$
⇒$\frac{-7}{12}-\frac{4}{9}$
⇒$\frac{(-7 \times 3)-(4 \times 4)}{36}$ LCM of 9, 12=36
⇒$\frac{-21-16}{36}$
y-x ⇒$\frac{-37}{36}$
ஃx-y ≠ y-x
7. $x=\frac{4}{9} ; \quad y=\frac{-7}{12} ; \quad z=\frac{-2}{3}$
Consider
$x-(y-z)=\frac{4}{9}-\left(\frac{-7}{12}-\left(\frac{-2}{3}\right)\right)$
$=\frac{4}{9}-\left(\frac{-7}{12}+\frac{2}{3}\right)$
⇒$\frac{4}{9}-\left(\frac{(-7 \times 1)+(2 \times 4)}{12}\right)$
⇒$\frac{4}{9}-\left(\frac{-7+8}{12}\right)$
⇒$\frac{4}{9}-\frac{1}{12}$
⇒$\frac{(4 \times 4)-(1 \times 3)}{36}$
=$\frac{16-3}{36}$
$x-(y-z)$ =$\frac{13}{36}$
Consider ( x-y)-z =$\left[\frac{4}{9}-\left(\frac{-7}{12}\right)\right]-\left(\frac{-2}{3}\right)$
$=\left[\frac{4}{9}+\frac{7}{12}\right]+\frac{2}{3}$
$=\left[\frac{(4 \times 4)+(-7 \times 3)}{36}\right]+\frac{2}{3}$
$=\frac{16+21}{36}+\frac{2}{3}$
$=\frac{37}{36}+\frac{2}{3}$
$=\frac{(37 \times 1)+(2 \times 12)}{36}$
⇒$\frac{37+24}{36}$
$(x-y)-z=\frac{61}{36}$
∴ $x-(y-z) \neq(x-y)-z
8
i) ⇒$\frac{2}{3}-\frac{4}{5}$
$\frac{(2 \times 5)-(4 \times 3)}{15}$ LCM = 3,5 = 15
⇒$\frac{10-12}{15}$
⇒$\frac{-2}{5}$ It is a Rational Number
So. givew statement is False
(ii)true
$\frac{-5}{7}+\frac{5}{7}=0$
Exercise 1.3
1.
(i)⇒$\frac{6}{-7} \times \frac{14}{30}$
=$\frac{6 \times 14}{-7 \times 30}$
=$-\frac{84}{210}$
=$\frac{-2}{5}$
(ii) $6 \frac{2}{3} \times 1 \frac{2}{7}$
⇒$\frac{20}{3} \times \frac{9}{7}$
⇒$\frac{20 \times 9}{3 \times 7}$
=$\frac{180}{21}$
=$\frac{60}{7}$
(iii) $\frac{25}{-9} \times \frac{-3}{10}$
=$\frac{25 \times(-3)}{-9 \times 10}$
=$\frac{-75}{-90}$
=$\frac{-5}{-6}$
=$\frac{5}{6}$
2.
i) To verify commutative property of multiplication, we have
to show $\frac{4}{5} \times \frac{-7}{8}=\frac{-7}{8} \times \frac{4}{5}$
L.H.S ⇒ $\frac{4 \times-7}{5 \times 8}$
⇒ $\frac{-28}{40}$
L.H.S ⇒ $\frac{-7}{10}$
R.H.S⇒ $\frac{-7}{8} \times \frac{4}{5}$
⇒$\frac{-7 \times 4}{8 \times 5}$
⇒$\frac{-28}{40}$
R.H.S⇒ $\frac{-7}{10}$
∴ L.H.S =R.H.S
∴ Commutative property of multiplication is verified
3. $\quad \frac{3}{5} \times\left(\frac{-4}{7} \times \frac{-8}{9}\right)=\left(\frac{3}{5} \times \frac{-4}{7}\right) \times \frac{-8}{9}$
L.H.S $=\frac{3}{5} \times\left(\frac{-4}{7} \times \frac{-8}{9}\right)$
$=\frac{3}{5} \times\left(\frac{-4 \times(-8)}{7 \times 9}\right)$
$=\frac{3}{5} \times\left(\frac{32}{63}\right)$
$=\frac{3 \times 32}{5 \times 63}$
$=\frac{96}{315}$
L.H.S⇒ $\frac{32}{165}$
$\begin{aligned} \text { R.H.S } &=\left(\frac{3}{5} \times \frac{-4}{7}\right) \times\left(\frac{-8}{9}\right) \\ &=\left(\frac{-3 \times(-4)}{5 \times 7}\right) \times\left(\frac{-8}{9}\right) \\ &=\frac{-12}{35} \times \frac{-8}{9} \\ &=\frac{-12 \times(-8)}{35 \times 9} \\ &=\frac{96}{315} \\ R.H.S &=\frac{32}{105} \end{aligned}$
L.H.S=R.H.S, HENCE PROVED
∴This law is called assoiative property of multiplication
ii) $\frac{5}{9} \times\left(\frac{-3}{2}+\frac{7}{5}\right)=\frac{5}{9} \times \frac{-3}{2}+\frac{5}{9} \times \frac{7}{5}$
L.H.S $=\frac{5}{9} \times\left(\frac{-3}{2}+\frac{7}{5}\right)$
$=\frac{5}{9} \times\left(\frac{(-3 \times 5)+(7 \times 2)}{10}\right) \quad$ LCM of $2,5=10$
$=\frac{5}{9} \times\left(\frac{-15+14}{10}\right)$
$=\frac{5}{9} \times\left(\frac{-1}{10}\right)$
L.H.S= $\frac{-1}{18}$
R.H.S= $\left(\frac{5}{9} \times \frac{-3}{2}\right)+\left(\frac{5}{9} \times \frac{7}{5}\right)$
$\left(\frac{5 \times(-3)}{18}\right]+\left[\frac{5 \times 7}{9 \times 5}\right]$
$=\left[\frac{5 \times(-3)}{18}\right]+\left[\frac{5 \times 7}{9 \times 5}\right]$
$=\frac{-15}{18}+\frac{35}{45}$
$=\frac{(-15 \times 5)+(35 \times 2)}{90}$
$=\frac{-75+70}{90}$
$=\frac{-5}{90}$
R.H.S $=\frac{-1}{18}$
L.H.S = R.H,S, Hence proved
This law is called disreibutive law of multiplication over addition
4.
i) 12 reciprocal of 12 =$\frac{1}{12}$
∴ $\frac{1}{12}$ is multiplicative inverse of 12
$\begin{array}{ll}\text { ii\} } & \text { reciprocal of } \frac{2}{3}=\frac{3}{2} \\ \therefore & \frac{3}{2} \text { is multipl:cative inverse of } \frac{2}{3}\end{array}$
iii) $\quad$ reciprocal of $\frac{-4}{7}=\frac{7}{-4}$ or $-\frac{7}{4}$
$\therefore \frac{-7}{4}$ is multiplicative inverse of $\frac{-4}{7}$
iv) $\frac{-3}{8} \times\left(\frac{-7}{13}\right)=\frac{-3 \times(-7)}{8 \times 13}=\frac{21}{104}$
reciprocol of $\frac{21}{104}$ in $\frac{104}{21}$
∴ $\frac{104}{21}$ in multiplicative inverse of $\frac{-3}{8} \times\left(\frac{-7}{13}\right)$
5.
i) $\frac{2}{5} \times \frac{-3}{7}-\frac{1}{14}=\frac{3}{7} \times \frac{3}{5}$
=$\frac{2 \times(-3)}{5 \times 7}-\frac{1}{14}-\frac{(3 \times 3)}{7 \times 5}$
=$\frac{-6}{35}-\frac{1}{14}-\frac{9}{35}$
⇒$\frac{(-6 \times 2)-(1 \times 5)-(9 \times 2)}{70} \quad$ LCM OF $35,14,35=70$
=$\frac{-12-5-18}{70}$
=$\frac{-35}{70}$
=$\frac{-1}{2}$
ii) $\frac{8}{9} \times \frac{4}{5}+\frac{5}{6}-\frac{9}{5} \times \frac{8}{9}$
=$\frac{(8 \times 4)}{9 \times 5}+\frac{5}{6}-\frac{(9 \times 8)}{(5 \times 9)}$
=$\frac{32}{45}+\frac{5}{6}-\frac{72}{45}$
=$\frac{(32 \times 2)+(5 \times 15)-(72 \times 2)}{90}$ L.C.M of 45,6,45= 90
=$\frac{64+75-144}{90}$
⇒$\frac{64+75-144}{90}$
=$\frac{-5}{90}$
⇒ $\frac{-1}{18}$
iii $\rangle \quad \frac{-3}{7} \times \frac{14}{15} \times \frac{7}{12} \times\left(\frac{-30}{35}\right)$
=$\frac{-3 \times 14 \times 7}{7 \times 15 \times 12} \times\left(\frac{-30}{35}\right)$
=$\frac{-294}{1260} \times\left(\frac{-30}{35}\right)$
=$\frac{-294 \times(-30)}{1260 \times 35}$
$\frac{1}{5}$
6. $P=\frac{-8}{27}, q=\frac{3}{4}, \quad \ r=\frac{-12}{15}$
i) $P{}(q \times \ r)=(p \times q) \times \ r$
L.H.S⇒P x (q x r)
$=\frac{-8}{27} \times\left(\frac{3}{4} \times\left(\frac{-12}{15}\right)\right)$
$=\frac{-8}{27} \times\left(\frac{3 \times(-12)}{4 \times 15}\right)$
$=\frac{-8}{27} \times\left(\frac{-36}{60}\right)$
$=\frac{-8 \times(-36)}{27 \times 60}$
$\begin{aligned} \ L \cdot H \cdot S &=\frac{8}{45} \\ R \cdot H \cdot S &=(P \times q) \times \ r \\ &=\left(\frac{-8}{27} \times \frac{3}{4}\right) \times\left(\frac{-12}{15}\right) \\ &=\left(\frac{-8 \times 3}{27 \times 4}\right) \times\left(\frac{-12}{15}\right) \\ &=\frac{-24}{108} \times\left(\frac{-12}{15}\right) \\ &=\frac{-24 \times-12}{108 \times 15} \end{aligned}$
R.H.S $=\frac{8}{45}$
∴ L.H.S $=$ R.H.S, Hence verified
ii)
$\begin{aligned} P \times(q-\ r) &=P \times q-P \times r . \\ L . H \cdot S &=P \times(q-\ r) \\ &=\frac{-8}{27} \times\left(\frac{3}{4}-\left(\frac{-12}{15}\right)\right) \\ &=\frac{-8}{27} \times\left(\frac{3}{4}+\frac{12}{15}\right) \\=& \frac{-8}{27} \times\left(\frac{(3 \times 15)+(12 \times 4)}{60}\right) \\=& \frac{-8}{27} \times\left(\frac{45+48}{60}\right) \\=& \frac{-8}{27} \times \frac{93}{60} \\=& \frac{-8}{27} \times \frac{31}{20} \end{aligned}$
L.H.S $=\frac{-62}{135}$
R.H.S $=-p \times q-P \times \ r$
⇒$\frac{-8}{27} \times \frac{3}{4}-\left(\frac{-8}{27} \times\left(\frac{-12}{15}\right)\right.$
⇒$\frac{-8 \times 3}{27 \times 4}-\left(\frac{-8 \times(-12)}{27 \times 15}\right)$
⇒$\frac{-24}{108}-\frac{96}{405}$
⇒$-\frac{2}{9}-\frac{32}{135}$
⇒$\frac{(-2 \times 15)-(32 \times 1)}{135}$
$=\frac{-30-32}{135}$
$R \cdot H \cdot S=\frac{-62}{135}$
$\therefore {LHS}=$ RHS; Hence veritied.
7.
i) $\frac{2}{3} \times \frac{-4}{5}$ is a Rational number
ii) $\frac{54}{81} \times \frac{-63}{108}=\frac{-63}{108} \times \frac{54}{81}$
iii) $\frac{4}{5} \times 1=\frac{4}{5}=1 \times \frac{4}{5}$
iv) $\frac{5}{-12} \times \frac{-12}{5}=1=\frac{-12}{5} \times \frac{5}{-12}$
v) $\frac{3}{7} \times\left(\frac{-2}{8} \times \frac{5}{9}\right)=\left(\frac{3}{7} \times \frac{-2}{8}\right) \times \frac{5}{9}$
vi $\rangle \quad \frac{-8}{9} \times\left[\frac{4}{13}+\frac{5}{17}\right]=\left(\frac{-8}{9} \times \frac{4}{13}\right)+\left(\frac{-8}{9} \times \frac{5}{17}\right)$
(vii) $\quad \frac{-6}{13} \times\left[\frac{8}{9}-\frac{4}{7}\right]=\frac{-6}{13} \times \frac{8}{9}-\left(\frac{-6}{13} \times \frac{4}{7}\right)$
Viii) $\quad \frac{16}{25} \times 0=0$
ix) Not detin-ed
$\begin{array}{ll}\text { x) } & 1,-1 \\ \text { xi }\rangle & x^{2} \\ \text { xii) } & 1 \\ \text { xiii)} & \text { negative }\end{array}$
8. NO,
= $\frac{4}{5} \times\left(-1 \frac{1}{4}\right)$
=$\frac{4}{5} \times\left(\frac{-5}{4}\right)$
=$-1 \neq 1$
$\therefore-1 \frac{1}{4}$ is not multiplicative inverse of $\frac{4}{5}$
$\therefore \quad$ mutiplicative inverse of $\frac{4}{5}$ should be $\frac{5}{4}$
9.
i) $\left\{\frac{7}{5} \times\left(\frac{-3}{12}\right)\right\}+\left\{\frac{7}{5}+\frac{5}{12}\right\}$
=$\frac{7}{5} \times\left\{\frac{-3}{12}+\frac{5}{12}\right\}$ (-i distributive property)
=$\frac{7}{5} \times\left\{\frac{-3+5}{12}\right\}$
=$\frac{7}{5} \times \frac{2}{12}$
=$\frac{7}{30}$
ii) $\left\{\frac{9}{16} \times \frac{4}{12}\right\}+\left\{\frac{9}{16} \times\left(\frac{-3}{9}\right)\right\}$
$\frac{9}{16} \times\left\{\frac{4}{12}+\left(\frac{-3}{9}\right)\right\} \quad(\because$ distributive property $)$
$\frac{9}{16} \times\left\{\frac{1}{3}+\left(\frac{-1}{3}\right)\right\}$
$\frac{9}{16}\left\{\frac{1}{3}-\frac{1}{3}\right\}$
$\frac{9}{16} \times 0=0$
10. Additive inverse of $9=-9$
Multiplicative inverse of $9=\frac{1}{9}$
$\begin{aligned} \text { Required Sum } &=-9+\frac{1}{9} \\ \text =-\frac{81+1}{9} \\ &=-\frac{80}{9} \\ {} &=-8 \frac{8}{9} \end{aligned}$
11. Additive inverse of $\frac{-2}{7}=\frac{2}{7}$
Multiplicative inverse ot $\frac{-2}{7}=\frac{-7}{2}$
Required product $=\frac{2}{7} \times\frac{-7}{2}$
$=-1$
Exercise 1.4
i) true
ii)false
iii)false
iv)true
v)ture
vi)false
Q3. let unknown number be $x$
⇒$x \times 2 \frac{4}{9}=\frac{-11}{12}$
⇒$x \times \frac{22}{9}=\frac{-11}{12}$
$x=\frac{-11}{12}$ x $\frac{22}{9}$
⇒$\frac{-11}{12} \times \frac{9}{22}$
$x=\frac{-3}{8}$
Other number $=\frac{-3}{8}$
4. Let unknown number be x
$x \times\left(\frac{-7}{12}\right)=\frac{5}{14}$
$x=\frac{5}{14} \div\left(\frac{-7}{12}\right)$
$=\frac{5}{14} \times \frac{12}{-7}$
$=\frac{5 \times 12}{14 \times(-7)}$
$=-\frac{60}{98}$
$=\frac{-30}{49}$
5. Let unkonw number be x
$\frac{-3}{x}=\frac{-9}{13}$
$x=-\frac{3}{1} \div\left(\frac{-9}{13}\right)$
$=\frac{-3}{1} \times \frac{13}{-9}$
$x=\frac{13}{3}=4 \frac{1}{3}$
6.
Sum of number = $\frac{-13}{8}+\frac{5}{12}$
$=\frac{(-13 \times 3)+(5 \times 2)}{24} \quad$ LCM of $812=24$
⇒$\frac{-39+10}{24}$
⇒$\frac{-29}{24}$
sum of numbers = $\frac{-29}{24}$
difference of numbers= $\frac{(-13 \times 3)-(5 \times 2)}{24}$
$\frac{-39-10}{24}$
Difference of numbers $=\frac{-49}{24}$
Requried product = sum of numbers ÷ difference of numbers
$\begin{aligned} &=\frac{-29}{24} \div\left(-\frac{49}{24}\right) \\=& \frac{-29}{24} \times \frac{24}{-49} \\ &=\frac{29}{49} \end{aligned}$
$\begin{aligned} 7 . \quad \text { Sum of two numbers } &=\frac{8}{3}+\frac{4}{7} \\ &=\frac{(8 \times 7)+(3 \times 4)}{21} \text { LCM Of } 3,7=21 \\ &=\frac{56+12}{21} \\ \text { Sum of two numbers } &=\frac{68}{21} \end{aligned}$
$\begin{aligned} \text { Product of given numbers } &=\frac{-3}{7} \times \frac{14}{9} \\ &=\frac{-2}{3} \end{aligned}$
$\begin{aligned} \text { Required product } &=\frac{\text { Sum of } \frac{8}{3} \text { and } \frac{4}{7}}{\text { product of }\frac{3}{1} \text { and } \frac{14}{9}} \\ &=\frac{68}{21} \div\left(\frac{-2}{3}\right) \\ &=\frac{68}{21} \times \frac{3}{-2} \\ &=\frac{-34}{7} \end{aligned}$
8. Givew $\quad P=\frac{-3}{2}, \quad q=\frac{4}{5}, \quad \ r=\frac{-7}{12}$
$(p \div q) \div r=p \div(q \div \ r)$
$\begin{aligned} \text { L.H.S } &=(p \div q) \div r \\ &=\left(\frac{-3}{2} \div \frac{4}{5}\right) \div\left(\frac{-7}{12}\right) \\ &=\left(\frac{-3}{2} \times \frac{5}{4}\right) \div\left(\frac{-7}{12}\right) \\ &=\left(\frac{-15}{8}\right) \div\left(-\frac{7}{12}\right) \\ &=\frac{-15}{8} \times \frac{12}{-7} \\ &=\frac{-15}{8} \times \frac{12}{-7} \end{aligned}$
$\begin{aligned} \text { L.H.S } &=+\frac{45}{7} \\ \text { R.H.S } &=p \div(q \div \ r) \\ &=\frac{-3}{2} \div\left(\frac{4}{5} \div\left(\frac{-7}{12}\right)\right) \\ &=\frac{-3}{2} \div\left(\frac{4}{5} \times \frac{12}{-7}\right) \\ &=\frac{-3}{2} \div\left(-\frac{48}{35}\right) \\ &=\frac{-3}{2} \times-\frac{35}{48} \\ R \cdot H S &=\frac{35}{32} \\ L \cdot H \cdot S \neq R \cdot H \cdot S \\(p \div q) \div r \neq P \div(q \div \tau) \end{aligned}$
Exercise 1.5
Exercise 1.6
⇒
⇒
⇒
⇒
⇒
3.$\frac{-4}{3}+\frac{3}{7}=\frac{3}{7}+\left(\frac{-4}{3}\right)$
x2
x2
0 comments:
Post a Comment