Sunday, March 21, 2021

ML AGGARWAL CLASS 8 CHAPTER 3 SQUARES AND ROOTS Exercise 3.1

 Exercise 3.1

Question 1

(i) 729

Sol :

Prime fractorisation

$\begin{array}{r|l}3&729\\ \hline 3& 243 \\ \hline 3&81\\ \hline 3& 27\\ \hline 3& 9 \\ \hline 3&3\\ \hline&1\end{array}$

⇒729=3×3×3×3×3×3

∴$729=27^{2}$

because 729 can be expressed as product of pairs of equal prime factors. 


(ii) 5488

Sol:

$\begin{array}{r|l}2& 5488\\ \hline 2& 2744 \\ \hline 2&1372\\ \hline 2& 686\\ \hline 7& 343 \\ \hline 7&49\\ \hline 7&7\\ \hline&1\end{array}$


⇒5488= 2×2×2×2×7×7×7

Since 7 left unpaired 5488 in not a perfect square

 

(iii)1024 

Sol:

 $\begin{array}{r|l}2&1024\\ \hline 2& 512 \\ \hline 2&256\\ \hline 2& 128\\ \hline 2& 64 \\ \hline 2&32\\ \hline2&16 \\ \hline 2&8\\ \hline 2&4\\ \hline 2&2\\ \hline&1\end{array}$

 ⇒1024= 2x2x2x2x2x2x2x2x2x2x2 

since 1024 is expressed as the product of pairs of equal prime number so it is a perfect square 

(iv) 243

Sol:

$\begin{array}{r|l}3&243\\ \hline 3& 81 \\ \hline 3&27\\ \hline 3& 9\\ \hline 3& 3 \\ \hline&1\end{array}$

$243=3 \times 3 \times 3 \times 3 \times 3$

As ' 3 ' let unpaired, So 243 is not a square (perfect)


Question 2 


(i) 1296

 $\begin{array}{r|l}2&1246\\ \hline 2& 648 \\ \hline 2&324\\ \hline 2& 162\\ \hline 3& 81 \\ \hline 3&27\\ \hline3&9 \\ \hline 3&3\\ \hline&1\end{array}$

⇒1296=2x2x2x2x3x3x3x3

since 1296 is expressed as the product of pairs of equal prime numbers so it is a perfect square 

1296= $2^{2} \times 2^{2} \times 3^{2} \times 3^{2}$

1296= $(2 \times 2 \times 3 \times 3)^{2}=36^{2}$

∴ 1296 is square of 36 

 

(ii) 1784

Sol:

$\begin{array}{r|l}2&1784\\ \hline 2& 892 \\ \hline 2&446\\ \hline 223& 223\\ \hline&1\end{array}$

1784= $=2 \times 2 \times 2 \times 223$

As 1784  can not be expressed as product of pairs of

 equal prime factors, so is not a perfect square 


(iii) 3025 

Sol:

$\begin{array}{r|l}5&3025\\ \hline 5& 605 \\ \hline 11&121\\ \hline&1\end{array}$

$3025=5 \times 5 \times 11 \times 11$

Since 3025 can be expressed as the product of pairs of

equal prime factors.

$3025=(5 \times 11)^{2}=55^{2}$

Hence, 55 is a number whose square is 3025


(iv) 3969

Sol: 

$\begin{array}{r|l}3&3969\\ \hline 3& 1323 \\ \hline 3&441\\ \hline 3& 147\\ \hline 3& 49 \\ \hline 7&7\\ \hline&1\end{array}$

$3969=3 \times 3 \times 3 \times 3 \times 7 \times 7$

3969 Can be expressed as product of pairs of

equal prime numbers.

$3969=3^{4} \times 3^{2} \times 7^{2}$

$3969=(3 \times 3 \times 7)^{2}$

$3969=63^{2}$

Hence, 63 is the number whose square is 3969


Question 3 

1008

Sol:    $\begin{array}{r|l}2& 1008\\ \hline 2& 504 \\ \hline 2&252\\ \hline 2& 126\\ \hline 7& 63 \\ \hline 3&9\\  \hline 3&3\\ \hline&1\end{array}$

$1008=2 \times 2 \times 2 \times 2 \times 7 \times 3 \times 3$

Since' 7 ' is left unpaired, so to make 1008 a
Perfect square it should be muttiplied by 7

Question 4 


5808

Sol:
⇒ $\begin{array}{r|l}2& 5808\\ \hline 2& 2904 \\ \hline 2&1452\\ \hline 2& 726\\ \hline 3& 363 \\ \hline 11&121\\  \hline 11&11\\ \hline&1\end{array}$

$5808=2 \times 2 \times 2 \times 2 \times 3 \times 11 \times 11$

Since ' 3' let unpaired. To make 5808 a perfect square
it should be divided by '3'.

so divide 5808 by '3'

$\frac{5808}{3}=\frac{2 \times 2 \times 2 \times 2 \times 3 \times 11 \times 11}{3}$

$1936=(2 \times 2 \times 11)^{2}=(44)^{2}$

so 44 is a number whose square is 1936

Exercise 3.2


Question 1


(i) 2

(ii) 13

(iii) 27

(iv) 88

(v) 243


Question 2 


(i) 1


(ii) 4


(iii
) 1


(iv) 9 


(v) 6


(vi) 5


(vii) 9


(viii) 4


(ix) 0


(x) 6


Question 3 


(i) 567

567 has '7' in its unit's place. a perfect square 

Should have 1,4,5,6,9,0 in it's unit's place.

so 567 is not a persect square.


(ii) 2453

2453 has '3' in it's unit's place. But a pertect square

should have 0,1,4,5,6,9 in it's unit's place.

So 2453 is not a persect square.


(iii) 5298

5298 has 8 in it's unit's place. But a perfect square

should have 0,1,4,5,6,9 in it's unit's place.

so 5298 is not a persect square.


(iv)4692

46292 has 2 in it's unit's place. But a perfect square

Should have 0,1,4,5,6,9 in it's unit's place

so 46292 is not a pertect square.


(v) 74000

74000 has 0 in it's unit's place but it has

odd no.of zero's and 740  is not a perfect square

so 74000 is not a perfeet square.

Question 4 


(i) 573

square of 573 is a odd number because ,If a number 
has 3 in the units place , then its square and in '9'


(ii) 4096

Square of 4096 is a even number because, If a rumber
has ' 6 ' in the units place, Then its square ends in ' 6 '


iii) 8267

Squar of 8267 is a odd number becouse, If a number

has 7 in the Units place, Then its square ends in ' 9


iv) 37916

square of 37916 is a even number becaise if a number 

has ' 6 ' in the Units place, then it square ends in ' 6 '

Question 5


i. 12 and 13

There are  2n non-square numbers betweew the squares of

two conseclutive numbers n and n+1

∴ natural numbers between 12 and $(12+1)=2 \times 12=24$

hence , there are 24 natural number between $12^{2}$ and $13^{2}$ 


(ii) 90 and 91

There are 2n non-square rumbers betweow the Squares

of two consective numbers n and n+1

∴ Natural numbers between 90 and 91=2 \times 90= 180

Hence, There are 180 natural numbers betwecn $90^{2}$ and $91^{2}$

Question 6


(i) $1+3+5+7+9+11+13=7^{2}=49$


(ii) $1+3+5+7+9+11+13+15+17+\cdots+29=15^{2}=225$

sum of first 'n' odd numbers = $n^{2}$


Question 7


(i) 64

$64-1=63 ; 63-3=60 ; 60-5=55$

$55-7=48: \quad 48-9=39 ; \quad 39-11=28$

$28-13=15 ; \quad 15-15=0$

∴ $64=1+3+5+7+9+11+13+15=8^{2}$


(ii) 121 

$121-1=120 ; 120-3=117 ; \quad 117-5=112 ; 112-7=105 ;$

$105-9=96 ; 96-11=85 ; 85-13=72 ; 72-15=57 ;$

$57-17=40 ; 40-19=21 ; \quad 21-21=0$

∴ $121=1+3+5+7+9+11+13+15+17+19+21=11^{2}$

Question 8

(i) $19^{2}=361$

"we can exrpress the square of any odd number greater

than 1 as the sum of two consective natural numbers."

First number $=\frac{19^{2}-1}{2}=180$

Second number $=\frac{19^{2}+1}{2}=181$

$19^{2}=361=180+181$


(ii) $33^{2}=1089$

First number $=\frac{33^{2}-1}{2}=544$

Second number $=\frac{33^{2}+1}{2}=545$

$33^{2}=1089=544+545$


(iii) $47^{2}=2209$

First number $=\frac{47^{2}-1}{2}=1104$

Second number $=\frac{47^{2}+1}{2}=1105$

$47^{2}=2209=1104+1105$

Question  9


(i) $31^{2}=(30+1)^{2}=(30+1)(30+1)$

$=30(30+1)+1(30+1)$

$=900+30+30+1$

$31^{2}=961$


(ii) $42^{2}=(40+2)^{2}=(40+2)(40+2)$

$=40(40+2)+2(40+2)$

$=1600+80+80+4$

$42^{2}=1764$


(iii) $86^{2}=(80+6)^{2}=(80+6)(80+6)$

$=80(80+6)+6(80+6)$

$=6400+480+480+36$

$86^{2}=7396$


(iv) $94^{2}=(90+4)^{2}=(90+4)(90+4)$

$=90(90+4)+4(90+4)$

$=8100+360+360+16$

$94^{2}=8836$

Question 10


(i) 45

Comparing with a5 where a = 4 

$4^{-1}(a 5)^{2}=a(a+1)$ hundreds +25

$45^{r}=4(4+1)$ hundreds +25

$=20$ hundreds +25
 
$45^{2}=2025$


(ii) 305

Comparing with a5 where a =30

$\left(a_{5}\right)^{2}=a(a+1)$ hundreds +25

$(305)^{2}=30(30+1)$ hundreds +25

 ⇒930 hundred +25

$(305)^{2}$= 93025


(iii) 525 

Comparing with a5 where a = 52

$(a 5)^{2}=a(a+1)$ hundreds +25

$(525)^{2}=52(52+1)$ humdreds +25

⇒ 2756 hundreds +25 

⇒$(525)^{2}=275625$

Question 11 


(i) 8 

Given number = 8 

let us assume $m^{2}-1=8$

⇒$m^{2}=9$

⇒m = 3

Remaining two numbers of pythagorean triplet are

$m^{2}+1,2 m$

$3^{2}+1, 2 \times 3$


10 , 6

The required triplet (6,8,10) with one number 


(ii) 15

Givew number =15

Let us assume $m^{2}-1=15$

$m^{2}=16$

m = 4

Remaining two numbers of Pythagorean triplet are

$m^{2}+1,2 m$

$16+1 \quad ,2 \times 4$

$17 \quad ,  8$

∴ The required triplet (8,15,17) with one number as 15 


(iii) 63 

Givew number 63

Let us assume $m^{2}-1=63$

$m^{2}=64$

$m=8$ 

Remaining two numbers of Pythagorean triplet are

$m^{2}+1,2 m$

$8^{2}+1 \quad 2 \times 8$

$65-16$

∴ We required triplet (16,63,65) with one rumber '63'

(iv) 80 

given number 80 

let us aasume $m^{2}-1=80 \Rightarrow m^{2}=81$

$m=9$

Remainig two numbers of Pythagorean triplet are

$m^{2}+1,2 m$

$q^{2}+1,2 \times 9$

82,18

∴ The required triplet (18,80,82) wits one number '80'


Question 12 

$21^{2}=$ 441

$201^{2}=$ 40401

$2001^{2}=$ 4004001

$20001^{2}=$ 40004001

$200001^{2}=$ 4000400001


Question 14


$7^{2}=$ 49

$67^{2}=$ 4489

$667^{2}=$ 444889

$6667^{2}=$ 44448889

$66667^{2}=$ 4444488889

$666667^{2}=$ 444444888889


Exercise 3.3

Question 1


(i) 121 

given number = 121

$121-1=120 ; 120-3=117 ; 117-5=112 ; 112-7=105$

$105-9=96 ; 96-11=85 ; \quad 85-13=72 ; 72-15=57$

$57-17=40 ; \quad 40-19=21 ; \quad 21-21=0$

∴ $121$ is a perfect squars 

we have done '11 Substractions

Hence, square root of 121 is $11 \Rightarrow \sqrt{121}$ = 11


(ii) 55 

given number = 55

$55-1=54 ; 54-3=51 ; 51-5=46 ; 46-7=39$

$39-9=30 ; 30-11=29 ; 29-13=16 ; 16-15=1$

$1-17=-16$

∴ 55 is not a perfect square   

(iii) 36 

Given number  =36

$36-1=35 ; 35-3=32 ; 32-5=27 ; 27-7=20$

$20-9=11 ; \quad 11-11=0$

$\ \quad 36$ is a perbect square

we have done 6 subtractions

Hence, square root of 36 i'e $\sqrt{36}$= 6

iv) 90

Givew number = 90

90-1=89 ; 89-3=86 ; 86-5=81 ; 81-7=74: 74-9=65

65-11=54 ; 54-13=41 ; 41-15=25 ; 25-15=10 ; 10-17=-7

∴ 90 is not a pertect square


 Question 2


(i) 784

Given number = 784 

⇒ $\begin{array}{r|l}2&784\\ \hline 2& 392 \\ \hline 2&196\\ \hline 2& 98\\ \hline 7& 49 \\ \hline 7&7\\ \hline&1\end{array}$

784 = 2 x 2 x 2 x 2 x 7 x7

$\sqrt{784}=\sqrt{2^{2} \times 2 \times 7^{2}}$

$\sqrt{784}=2 \times 2 \times 7=28$


(ii) 441

Given number = 441 

 $\begin{array}{r|l}3&441\\ \hline 3& 147\\ \hline 7&49\\ \hline 7& 7\\  \hline&1\end{array}$

441= 3 x 3x 7 x 7 

$\sqrt{441}=\sqrt{3^{2} \times 7^{2}}$

$\sqrt{441}=3 \times 7=21$


(iii) 1849

Given number = 1849

 $\begin{array}{r|l}43&1849\\ \hline 43& 43\\ \hline&1\end{array}$

1849 = 43 x 43

$\sqrt{1849}=\sqrt{43 \times 43}$

$\sqrt{1849}=43$


(iv) 4356

Givew number = 4356 

 $\begin{array}{r|l}2&4356\\ \hline 2&2178 \\ \hline 3&1089\\ \hline 3& 368\\ \hline 11& 121 \\ \hline 11&11\\ \hline&1\end{array}$

4356 = 2 x 2 x 3 x 3 x 11 x 11

$\sqrt{4356}=\sqrt{2^{2} \times 3^{2} \times 11^{2}}$

$\sqrt{4356}=2 \times 3 \times 11=66$

(v) 6241 

Given number = 6241

$\begin{array}{r|l}79&6241\\ \hline 79& 79\\ \hline&1\end{array}$

 6241 = 79 x 79

$\sqrt{6241}=\sqrt{79^{2}}=79$


(vi) 8836 

Givew number = 8836

 $\begin{array}{r|l}2&8836\\ \hline 2& 4418\\ \hline 47&2209\\ \hline 47&47\\  \hline&1\end{array}$

8836 = 2 x 2 x 47 x 47

$\sqrt{8836}=\sqrt{2^{2} \times 47^{2}}$

$\sqrt{8836}=2 \times 47=94$


(vi)  8281 

Given number = 8281 

 $\begin{array}{r|l}7&8281\\ \hline 7& 1183\\ \hline 13&169\\ \hline 13&13\\  \hline&1\end{array}$

8281 =7 x 7 x 13 x 13 

$\sqrt{8281}=\sqrt{7^{2} \times 13^{2}}$

$\sqrt{8281}=7 \times 13=91$ 


(viii) 9025

 $\begin{array}{r|l}5&9025\\ \hline 5& 1805\\ \hline 19&361\\ \hline 19&19\\  \hline&1\end{array}$

9025 = 5 x 5 x 19 x19

$\sqrt{9025}=\sqrt{5^{2} \times 19^{2}}$

$\sqrt{9025}=95$


 Question 3



(i)  $9 \frac{67}{121}=\frac{1156}{121}$

Sol: 

 ⇒ $\begin{array}{r|l}2&1156\\ \hline 2& 578\\ \hline 17&289\\ \hline 17&17\\  \hline&1\end{array}$

⇒$1156=2 \times 2 \times 17 \times 17$

⇒$9 \frac{67}{121}=\frac{2 \times 2 \times 17 \times 17}{11 \times 11}$

⇒$\sqrt{9 \frac{67}{121}}=$ $\sqrt{\frac{2 \times 2 \times 17 \times 17}{11 \times 11}}$

$=\frac{2 \times 17}{11}$

⇒ $\sqrt{9 \frac{67}{121}}=\frac{34}{11}$


(ii) $17 \frac{13}{36}=\frac{625}{36}$

Sol:

$\begin{array}{r|l}5&625\\ \hline 5& 125\\ \hline 5&25\\ \hline 5&5\\  \hline&1\end{array}$

$625=5 \times 5 \times 5 \times 15$

$17 \frac{13}{36}=\frac{5 \times 5 \times 5 \times 5}{6 \times 6}$

$\sqrt{17 \frac{13}{36}}=\sqrt{\frac{5 \times 5 \times 5 \times 5}{6 \times 6}}$

$=\frac{5 \times 5}{6}$

$\sqrt{17 \frac{13}{36}}$ = $\frac{25}{6}$


(iii) $1.96=\frac{196}{100}$

Sol:

$1.96=\frac{2 \times 2 \times 7 \times 7}{10 \times 10}$

$\begin{array}{r|l}2&196\\ \hline 2& 98\\ \hline 7&49\\ \hline 7&7\\  \hline&1\end{array}$

$196=2 \times 2 \times 7 \times 7$

$1.96=\frac{2 \times 2 \times 7 \times 7}{10 \times 10}$

$\sqrt{1.96}=\frac{2 \times 7}{10}=1.4$


(iv)  0.0064

Sol: 

$0.0064=\frac{64}{10000}$

$\begin{array}{r|l}2&64\\ \hline 2&32 \\ \hline 2&16\\ \hline 2& 8\\ \hline 2& 4 \\ \hline 2&1\\ \hline&1\end{array}$

$0.0064=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{10 \times 10 \times 10 \times 10}$

$\sqrt{0.0064}=\sqrt{\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{10 \times 10 \times 10 \times 10}}$

$=\frac{2 \times 2 \times 2}{10 \times 10}=0.08$

$\sqrt{0.0064}=0.08$



Question 4


(i) Given number =588

Expressing in prime factors

$\begin{array}{r|l}2&588\\ \hline 2&294 \\ \hline 7&147\\ \hline 3& 21\\ \hline 7& 7 \\ \hline&1\end{array}$

$588=2 \times 2 \times 7 \times 7 \times 3$

Since ' 3 ' left unpaired, so to

make   588 it should multiplied 

by ' 3 '
 
$588 \times 3=2 \times 2 \times 7 \times 7 \times 3 \times 3$

$1764=2^{2} \times 7 \times 3^{2}$

$\sqrt{1764}=\sqrt{2^{2} \times 7^{2}+3^{2}}$

$\sqrt{1764}=2 \times 7 \times 3=42$


(ii) Given number =720

Expressing in prime factors

 $\begin{array}{r|l}2& 720\\ \hline 2& 360 \\ \hline 2&180\\ \hline 2& 90\\ \hline 3& 45 \\ \hline 3&15\\  \hline 5&5\\ \hline&1\end{array}$

$720=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$

Since 5 left unpaired, to make 

720 perfect square it should be

multiplied by 5

$3600=2^{2} \times 3^{2} \times 5^{2} \times 2^{2}$

$\sqrt{3600}= \sqrt{2^{2} \times 2^{2} \times 3^{2} \times 5^{2}}$

$\sqrt{3600}=2 \times 2 \times 3 \times 5=60$


(iii)  Sol:

Given number 2178

Expressing in prime factors

$\begin{array}{r|l}2&2178\\ \hline 3&1089 \\ \hline 3&363\\ \hline 11& 121\\ \hline 11& 11 \\ \hline&1\end{array}$
\
$2178=2 \times 3 \times 3 \times 11 \times 11$

since 2' left unpaired to make 2178  a product square it should be multiplied by 2

$\begin{aligned} 2178 \times 2 &=2 \times 2 \times 3 \times 3 \times 11 \times 11 \\ 4356 &=2^{2} \times 3^{2} \times 11^{2} \end{aligned}$

$\sqrt{4356}=\sqrt{2^{7} \times 3^{2} \times 11^{2}}$

= 2 x 3 x 11

$\sqrt{4356}=66$



(iv) Givew number =3042

Expressing in prime factors 

$\begin{array}{r|l}2&2178\\ \hline 3&1089 \\ \hline 3&363\\ \hline 11& 121\\ \hline 11& 11 \\ \hline&1\end{array}$

$3042=2 \times 3 \times 3 \times 13 \times 13$
 
since '2' left unpaired so to make 3042 a perfect square it should be multiplied by ' 2 '

$3042 \times 2=2 \times 2 \times 3 \times 3 \times 13 \times 13$

$$6084=2^{2} \times 3^{2} \times 13^{2}$

$\sqrt{6084}=2 \times 3 \times 13=78$


(v) 6300

Given number =6300

Expressiny in prime factors

$\begin{array}{r|l}2 & 6300 \\ \hline 2 & 3150 \\ \hline 5 & 1575 \\ \hline 5 & 315 \\ \hline 7 & 63 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline&1\end{array}$

$6300=2 \times 2 \times 5 \times 5 \times 7 \times 3 \times 3$ 

 since '7' left unparied , so to make 6300 a perfect square , it should be multiplied by '7' 

$6300 \times 7=2 \times 2 \times 5 \times 5 \times 7 \times 7 \times 3 \times 3$

$\sqrt{44100}=\sqrt{2^{2} \times 5^{2} \times 7^{2} \times 3^{2}}$

$\sqrt{44100}=2 \times 5 \times 7 \times 3$

$\sqrt{44100}=210$



Question 5


(i)   Given number 1872 expressing in prime factors 

$\begin{array}{r|l}2 &1872 \\ \hline 2 & 936 \\ \hline 2 & 468 \\ \hline 2&234 \\ \hline 3 & 117 \\\hline 3 & 39 \\ \hline 13 & 13 \\ \hline & 1\end{array}$ 

 Since 13 left unpaired, so to make 1872 a perfect square it should be divided by 13

$\frac{1872}{13}=\frac{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 13}{13}$

$144=2 \times 2 \times 2 \times 2 \times 3 \times 3$

$\sqrt{144}=\sqrt{2^{2} \times 2^{2} \times 3^{2}}$

$\sqrt{144}=2 \times 2 \times 3=12$


(ii)  Given number 2592  expressing in prime number

$\begin{array}{r|l}2 &2592 \\ \hline 2 & 1296 \\ \hline 2 & 648 \\ \hline 2&324 \\ \hline 2 & 162 \\ \hline 2 & 81 \\ \hline 3 & 27 \\ \hline3 & 9 \\ \hline3 & 3 \\ \hline & 1\end{array}$ 

2592 =  $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

Since ' 2 ' lets unpaired, so to

make 2592 a prefect square, it

Should be divided ' 2 '

$\frac{2592}{2}=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3}{2}$
sqrt{2^{2}
$1296=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$$1

$\sqrt{1296}=\sqrt{2^{2} \times 2^{2} \times 3^{2} \times 3^{2}}$

$\sqrt{1296}=36$


(iii)  Given number 3380 expressing interms of prime factors 

$\begin{array}{r|l}2&3380\\ \hline 2&1690 \\ \hline 5&845\\ \hline 13& 169\\ \hline 13& 13 \\ \hline&1\end{array}$

since '5' is left unpaired so to make a perfect square it should be divided by 5 

$3380 \div 5=\frac{2 \times 2 \times 5 \times 13 \times 13}{5}$

$676=2 \times 2 \times 13 \times 13$

$\sqrt{676}=\sqrt{2 \times 2 \times 13 \times 13}$

$\sqrt{676}=2 \times 13 \in 26$


(iv) 16244

Expressing in terms of prime factors

16244

$\begin{array}{r|l}2 &16244 \\ \hline 2 & 8122 \\ \hline11 & 4061 \\ \hline 3&371 \\ \hline 3 & 117 \\ \hline 3 & 39 \\ \hline 13 & 13 \\ \hline & 1\end{array}$ 


Question 8 

Sol: let breadth of rectangle = x .m 

given 

        length of rectangle is equal to 4 times the breadth 

∴ L = 4 . x 

area of rectangle = 1936 

l x b = 1936 

$\begin{aligned} 4 x \times x &=1936 \\ x^{2} &=\frac{1936}{4} \\ x^{r} &=484 \\ x &=22 \mathrm{~m} \end{aligned}$

hence breadth of rectangle = x = 22m 

length of rectangle $=4 x=4 \times 22=88 \mathrm{~m}$


Question 9

Sol :

let the no.of columns  = x

givew no.of rows equal to no of column 

ஃ no of rows = x

Total students equal to 2000 but 64 studers

could not be accomndated in These rows columns

$\begin{aligned} \therefore \quad x \times x &=2000-64 \\ x^{2} &=1936 \\ x &=\sqrt{1936} \\ x &=44 \end{aligned}$

hence , no of rows = 44

$\begin{array}{r|l}2 &1936 \\ \hline 2 & 868 \\ \hline2 &434 \\ \hline 2&242 \\ \hline 11 & 121 \\ \hline 11 & 11\\ \hline & 1\end{array}$

$1936=2 \times 2 \times 2 \times 2 \times 11 \times 11$

$\sqrt{1936}=2 \times 2 \times 11=44$


(v) Given number 61347 

expressing interms of prime factors 

$\begin{array}{r|l}3&61347\\ \hline 11&20449 \\ \hline 11&1859\\ \hline 13& 169\\ \hline 13& 13 \\ \hline&1\end{array}$

61347 = $=3 \times 11 \times 11 \times 13 \times 13$

since 3 left unpaired so to make 61347 a perfect square it should be divided by 3

$61347 \div 3=\frac{3 \times 11 \times 11 \times 13 \times 13}{3}$

$20449=11 \times 11 \times 13 \times 13$

$\sqrt{20449}=\sqrt{11^{2} \times 13^{2}}$

$\sqrt{20449}=11 \times 13={143}$

(6) let no of rows of plants in garden = x 

given each row contains as many plants as the no of rows 

no of plants in each row = x 

total no of plants = $x \times x=x^{2}$

given Total no.ot plants in garden =4225

$\begin{aligned} \therefore \quad x^{2} &=4225 \\ x &=\sqrt{4225} \\ & x=65 \end{aligned}$

hence, no.of rows in garden = 65

no.ot plants in a row $=65$


Question 10 

 Let no of students = x 

given contribution of such student = no of students 

∴ contribution of each students = $\bar{₹} x$

Total collected for Pcnic =22304


∴ $x \times x=2304$

$x^{2}=2304$

$x=\sqrt{2304}$

$x=48$


Question 11

Let number is 15 times the other 

second number = 15.x

product of two number = 7260 

$\begin{aligned} 15 x \cdot x &=7260 \\ x^{2} &=\frac{7260}{15} \\ x^{2} &=484 \\ x &=\sqrt{484} \\ x &=22 \end{aligned}$

$\begin{array}{r|l}2&484\\ \hline 2&242 \\ \hline 11&121\\ \hline 11& 11\\ \hline&1\end{array}$

$484=2 \times 2 \times 11 \times 11$

$\sqrt{484}=2 \times 11=22$


Question 12 


Sol : Given number are in ratio of 2 : 3 : 5 

let number be 2x , 3x , 5x 

given sum of squares of numbers $=950$

$(2 x)^{2}+(3 x)^{2}+(5 x)^{2}=950$

$4 x^{2}+9 x^{2}+25 x^{2}=950$

$x^{2}=\frac{950}{38}$

$x^{2}=25$

$x=5$

$\begin{aligned} \text { Hence, } & \text { Numbers are } 2 x, 3 x, 5 x \\ & 10,15,25 \end{aligned}$
 

Question 13


Sol:

Perimeters of two Squares $=60 \mathrm{~m}, 144 \mathrm{~m}$

$P_{1}=60 \mathrm{~m} ; P_{2}=144 \mathrm{~m}$

Perimeter let length of sides of square are = $x_{1}, x_{2}$

$\begin{aligned} \therefore P_{1} &=4 x_{1} \\ 60 &=4 x_{1} \\ x_{1} &=15 \mathrm{~m} \end{aligned}$

$P_{2}=4 x_{2}$

$144=4 x_{2}$

$x_{2}=36 m$

$\begin{aligned} \text { Areas } A_{1} &=x_{1}^{2} \\ A_{1} &=15^{2} \\ A_{1} &=225 \mathrm{~m}^{2} \end{aligned}$

Area $\begin{aligned} A_{2} &=x_{2}^{2} \\ A_{2} &=36^{2} \\ A_{2} &=1296 \mathrm{~m}^{2} \end{aligned}$

let a square of side x with area ' $A_{1}+A_{2}$'

$A=A_{1}+A_{2}$

$x^{2}=225+1296$

$x^{2}=1521$

$\begin{array}{r|l}3&1521\\ \hline 3&507 \\ \hline 13&169\\ \hline 13& 13\\ \hline&1\end{array}$

$\begin{aligned} 1521 &=3 \times 3 \times 13 \times 13 \\ \sqrt{1521} &=3 \times 13=39 \end{aligned}$

$x^{2}=1521$

$x_{2} \sqrt{1521}$

$x=39 \mathrm{~m}$

Perimeter oF square 

$\begin{aligned} P &=4 x \\ &=4 \times 39 \\ P &=156 \mathrm{~m} \end{aligned}$

∴ Hence, perimeter =156 m


EXERCISE 3.4


Question 1


(i) Given number 2401

(diagram should be added  )

$\therefore \sqrt{2401}=49$


(ii) 4489

(diagram should be added  )

$\therefore \sqrt{4489}=67$


(iii)  106929

(diagram should be added  )

$\therefore \sqrt{106929}=327$


(iv) given number 167281

(diagram should be added)

$\therefore \sqrt{167281}=409$


v) givew number 53824

$\therefore \sqrt{213444}=462$

$\therefore \sqrt{53824}=232$

vi) given number 213444

$\therefore \sqrt{213444}=462$

$\therefore \sqrt{213444}=462$


Question 2


i) Given number 81=2 (even)

            The number of digits in its square root = $\frac{2}{2}=1$

ii) Given number $169=3($ odd $)$

⇒The number of digits in its square root $=\frac{3+1}{2}=2$

iii) Given number $4761=4$ (even)

⇒the number of digits in its square root $=\frac{4}{2}=2$

iv) Given number $27889=5$ (odd)

⇒ The number of digits in its square root $=\frac{5+1}{2}=3$

V) Givew number $525625=6($ even $)$

∴ The  number of digits in its square root $\frac{6}{2}=3$


Question 3


Sol :

(i) Given number 51.84

(diagram should be added  )

$\therefore \sqrt{51.84}=7.2$


(ii) 42.25

(diagram should be added  )

$\sqrt{42.25}=6.5


(iii)  Given number 18.4041

(diagram should be added  )

$\sqrt{18.4041}=4.29$


(iv) Given number 5.774409 

(diagram should be added  )

$\therefore \sqrt{5.774409}=2.403$


Question 4


(i) 645.8 

(diagram should be added  )

$\therefore \sqrt{645.8}=25.412 \approx 25.41$ (correct to 2 decimals )


(ii) 107.45

(diagram should be added  )

$\sqrt{107 \cdot 45}=10.365 \approx 10.36$


(iii) Given number 5.462

(diagram should be added  )

$\therefore \sqrt{5.462}=2.337 \approx 2.34$ (corrected to '2 'decimals)


(iv) Given number 2 

(diagram should be added  )

$\sqrt{2}=1.414 \approx 1.41$


(v)  Given number 3 

(diagram should be added  )

$\sqrt{3}=1.732 \approx 1.73$ (Corrected to 2 decimals $)$


Question 5

(i) $\frac{841}{1521}$

(diagram should be added  )

$=\frac{\sqrt{841}}{\sqrt{1521}}=\frac{29}{39}$


(ii)  $8 \frac{257}{529}=\frac{4489}{529}$

(diagram should be added  )

$\sqrt{8 \frac{257}{529}}=\sqrt{\frac{4489}{529}}$

$\sqrt{8 \frac{257}{529}}=\frac{67}{23}$


(iii) $16 \frac{169}{441}=\frac{7225}{441}$

(diagram should be added  )

$\sqrt{16 \frac{169}{441}}=\frac{\sqrt{7225}}{\sqrt{441}}=\frac{85}{21}$


Question 6


(i) Given nunmber 2000

⇒(diagram should be added  )

⇒ Hence , the least number that must be subtracted from 

2000 so as to make it a perfect square is 64 

∴ Requred perfect square numbers =2000 - 64

= $1936=44^{2}$


(ii) Given number 984

⇒(diagram should be added  )

⇒ Hence , the least number that must be subtracted 
  
from 984 so as to make it a perfect square is 23 

∴ Requred perfect square numbers = 984 - 23 = 961 = $=31^{2}$


iii) Givew number 8934

⇒(diagram should be added  )

⇒ Hence, the least number that must be subtracted

from 8934 so as to make it a perfect square in 98

∴ The required Square number 8934-98 = 8836=$94^{2}$


iv) Givew number 11021

⇒(diagram should be added  )

⇒ Hence , the least number that must be subtracted 

from 11021 so as to make it a perfect square is 205 

 The required square number 11021 - 205 = 10816 = $104^{2}$


Question 7 


(i) Given number 1750 

⇒(diagram should be added  )

⇒ 1750\rangle$(41)^{2} \Rightarrow$ Remainder $=69$

⇒$(42)^{2}=1764$

⇒ $\therefore$ Required number =1764-1750=14

⇒ Hence, the least number that must be added to 1750

So as to make it a perfect square is 14


(ii) Givew number 6412

⇒(diagram should be added  )

⇒$6412>(80)^{2}$

=$81^{2}=6561$

⇒ $\therefore$ Required number $=6561-6412=149$

⇒ Hence, the least number That must be added to 6412

So as to make it a perfect square is 149


(iii)  givew number 6598

⇒(diagram should be added  )

⇒ $6598>(81)^{2}$

=$(82)^{2}=6724$

$\therefore$ Required number $=6(82)^{2}-6598=126$

⇒ hence , the minimum number that must be added to 6598 so as to make it a perfect square is 126


(iv) Givew number 8000

⇒(diagram should be added  )
 
⇒ $8000>89^{2}$

⇒$90^{2}=8100$

⇒ $\therefore$ Required number $=90^{2}-8000=100$

⇒ hence , the minimum number that must be added to 
 
8000 so as to make it a perfect square is 100


Question 8 

Smallest four digit number =  1000 

⇒(diagram should be added  )

⇒ $1000>31^{2}$

⇒ $32^{2}$ will be next perfect square

⇒ $32^{2}=1024$

⇒ Hence , 1024 is smallest four digit number which perfect square


Question 9 

Greatest six digit number = 999999 

⇒ (diagram should be added  )

⇒ To make 999999 a perfect square , we have to subtract 1998 from 999999

⇒ The required number = 998001 

⇒ hence , 998001 is greatest six digit number which is a perfect square 


Question 10 


(i) AB = 14 cm 

Bc = 48 cm
 
according to pythagorus theorem 

⇒ $A C^{2}=A B^{2}+B C^{2}$

⇒$14^{2}+48^{2}$

⇒ $A C^{2}=2500$

⇒ $A C=\sqrt{2500}$

⇒ $A C=50 \mathrm{~cm}$


(ii) $A C=37 \mathrm{~cm}, B C=35 \mathrm{Cm}, A B=?$
 
⇒ According to pythagorus theorem

⇒ $A C^{2}=A B^{2}+B C^{2}$

⇒ $37^{2}=A B^{2}+35^{2}$

⇒ $1369=A B^{2}+1225$

⇒ $A B^{2}=144$

⇒ $A B=12 \mathrm{~cm}$


Question 11 

Total plants = 1400 

let no . of rows = x 

no. of columns = x 

⇒ (diagram should be added  )

$x^{2}=1400$

$1400>(37)^{2}$

$38^{2}=1444$

So To make 1400 a perfect square, we have add

minimum of 44

$\therefore 44$ plants needed more.


Question 12

⇒ Total no of students = 1000 

⇒ let no of row = no of columns = x

⇒ Total students rows x columns = 1000

⇒ (diagram should be added  )

⇒ $x \times x=1000$

$x^{2}=1000$

$x=\sqrt{1000}$

So Remainder $=39$

⇒ hence 39 children will be left out 


Question 13

⇒  (diagram should be added  )

⇒ Distance that amit walk while retuning 

⇒ AC

 In $\triangle A B C$

⇒ According to pythagorus theorem

⇒ $A C=A B^{2}+B C^{2}$

⇒$A C^{2}=16^{2}+63^{2}$

⇒$A C^{2}=4225$

⇒$A C=65 m$

ஃ Hence amit walks 65c while returing to his house


Question 14

Sol: (diagram should be added  )

⇒ Length of  ladder = 6m 

height of wall = 4.8m

In $\triangle A B C$

According Pythagorus tbeorem

⇒ $A C^{2}=A B^{n}+B C^{2}$

$B^{2}=4 \cdot 8^{2}+B C^{2}$

$B C^{N}=12.96$

$B C=\sqrt{12.96}$

$B C=3.6 \mathrm{~m}$

⇒ Hence, Distance between wall ond foot of ladder

is 3.6 m



⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒













0 comments:

Post a Comment