Wednesday, March 31, 2021

ML AGGARWAL CLASS 8 CHAPTER 5 Playing with Numbers Excercise 5.1

 Exercise 5.1


Question 1


(i) 89

Let given number be $a b$ i.e $10 a+b$

 ∴ 89=$10 \times 8+9$


(ii) $207=2 \times 100+0 \times 10+7$


(iii) $\quad 369=100 \times 3+10 \times 6+9$


Question 2

Sol:

 Given number = 34 

Number obtained by reverssing the digits = 43 

sum = 34 + 43 =77 = 7 x 11

i) when sum is divited by 11, quotient is 7 

ii) Whew sum is divided by 7 , quotient is 11


Question 3


Sol:

Given number =73
 
Number obtained by reversing the digits =37

Difference =73-37=36=$9 \times 4$

(i) Whew difference is divided by 9, quoptient is 4

(ii) When difference is divided by 4 (differen ot digits),

quotient is 9


Question 4


Sol:

given number =a b c

numbers obtained by reversing digits = b c a , c ab 

sum =a b c+b c a, c a b

i) When sum divided by 111 , quotient is (a+b+c)

ii when som divided by $(a+b+c),$ quctient is 111

iii) whew sum divided by 37, quotient is  3(a+b+c)

iv) when sum dividect by 3, quotient is 37(a+b+c)$


Question 5


Given number =843

number obtained by reversing digits =348

Difference $=843-348=495=99 \times 5$

i) When difrerence divided by 99, quotient =5

ii) when difference divided by 5, quotient =99


Question 6


Let the given number is ab

Sumof digit=11 = a+b=11 $\rightarrow(1)$

From given condition

$b a=a b-9$

$10 X b+a=10 X a+b-9$

$10(b-a)=(b-a)-9$

$10(b-a) - (b-a)=-9$

$9(b-a) = - 9$

b-a= -1------②

Solving (1) and (2)

$b-a=-1$

$b+a=11$
-------------
       2b = 10 

      b= 5


b + a =11

5 + a = 11

a = 6


Question 7


given 

let given number  is ab 

given condition 

ab - ba = 36

$10 a+b-(10 b+a)=36$

$10(a-b)+(b-a)=36$

$10(a-b)-(a-b)=36$

$9(a-b)=36$

$a-b=\frac{36}{9}$

a-b=4 

∴ Difference of two digits = 4 



Question 8


let given number be ab 

given condition 

sum of two digit number and the number 

obtained by reversing the digits is 55 

$a b+b a=3655$

$10 a+b+10 b+a=3655$

$10(a+b)+(b+a)=31655$

$11(a+b)=55$

$(a+b)=\frac{55}{11}$

$a+b=5$

∴ Sum of digits is 5 


Question 9


Let given3 digits number be abc 

Given   

     unit's digits ten's digit and hundred's digit 

are in the ratio  1 : 2 : 3

  c : b : a = 1 : 2 : 3---------- ①

and

 $\quad a b c-c b a=594 \rightarrow(2)$

$100 a+10 b+c-(100 c+10 b+a)=594$

$100(a-c)+10 b-10 b+(c-a)=594$

$100(a-c)+0-(a-c)=594$

$99(a-c)=594$

$a-c=\frac{594}{99}$

$a-c=6 \rightarrow(3)$

given $\quad c ; b: a=1: 2: 3$

let 

$c=1 \times x$
$b=2 \times x$
$a=3 \times x$

Substitube $a, c$ values in (3)

$\begin{aligned} 3 x-1 x &=6 \\ 2 x &=6 \\ x &=6 / 2 \\ x &=3 \end{aligned}$

$\begin{aligned} \therefore \quad a &=3 \times 3=9 \\ \ b &=2 \times 3=6 \\ c &=1 \times 3=3 \end{aligned}$


 ∴ given number is 963



Question 10


Let the given number be = abc 

given 

       c = a + 1 --------1

       b = a - 1 ---------2

given sum of original number and numbers 

 obtained by reversing cyclically is 2664 

 abc + bca + cab = 2664 --------3

but   abc + bca + cab = 111 X ( a +  b + c )--------4


 ∴ from eq 3 and eq 4 


$111 \times(a+b+c)=2664$

$a+b+C=\frac{2664}{111}$

$\quad a+b+c=24$

$a+a-1+a+1=24(\because$ From 1,2$)$♀

$3 a=24$

$a=\frac{24}{3}$

$a=8$

$c=a+1=8+1=9$

$b=a-1=8-1=7$

 ∴ given number is 879





Exercise 5.2


Question 1 

4  A 

3  5
--------
B  2
--------

A+5= we get a number whose unit's

digit in 2, A+5 should not exceed 14

$\begin{aligned} \therefore A+5 &=12 \\ A &=12-5 \\ A &=7 \end{aligned}$

4  7
3   5
-------
8   2
-------

B = 8

∴ A = 7 , B = 8 

Question 2

5     A 
7     9
---------
CB  3
---------

A+9 Should Not exceeD 18 . and for A+9= anumber

whose unit's place is 3 this:s possible when A=44

(daigram should be added)

∴ A = 4 , C = 1 , B = 3


Question 3


4  2  A 
2  A  5 
---------
A  0  2 
---------

A+5 sum should not exceed 14 and it is a

number whose Unit's digit is 2 This is possible

when A=7 

(daigram should be added)

A = 7 

satisfies given condition 

 A = 7 


Question 4


     A  A
+   A  A
-----------
   BA  8 

case(i)

 $\begin{aligned} A+A &=8 \\ 2 A &=8 \\ A &=4 \end{aligned}$

check 

        4  4 

        4  4 
-------------
         8  8 

but given the sum 

 as there digit number 

case (ii)

A + A 18 

2A = 18 

A = 9 

check :   9  9 

               9  9 
         -----1----------
               198
         ----------------

      A = 9 ,  B = 1 

      A = 9 ,   B = 1 



Question 5


  1  8  A 
+B  A  7
-----------
   C B   2 
-----------

A + 7 sum should not exceed 16 and it is a 
 
number whose unit, s digit is 2 

 ∴ A + 7 = 12 

A =  12 - 7 
 
A =  5

$1+8+A \Rightarrow 1+8+5=13$

1+B=C

C=1+4

C=5

 ∴ A = 5 , B = 4 , C = 5 


Question 6


 A  2  1  B 
+1  C  A  B 
--------------
   B 4   9   6 
 
B +  B  sum should not exceed 18 and its units digits is 6 

case (i) 

B + B = 6 

2B = 6 

B = 3 

 Then 1 + A = 9 

A = 8 

A + 1 = B 

8 + 1 = B 

B = 9 but we got B = 3 earlier 

so B ≠ 3


case (ii) 

B+B=16

2 B=16

$B=\frac{16}{2}$

B=8

7   2  1   8 
1   2  7   8 
--------------
 8  4   9   6 

A + 1 = B 

A   + 1 = 8 

A  = 8 - 1 

 A = 7      A = 7 

 ஃ A = 7  B = 8  C = 2 



Question 7


B  3  4  5
C  9  B  A 
--------------
8   B  A  2 
--------------

 Sum 5 + A = 12 

A = 12 - 5 

A  = 7

1 + 4  + B = A 

1 +  4  + B = 7 

B = 7 - 5

B = 2 

$\begin{aligned} B+C &=8 \\ 2+C &=8 \\ C &=8-2 \end{aligned}$

c=6 

$A=7, \quad B=2, C=6$



Question 8

$\begin{array}{r}A B \\(-) B 6 \\\hline 4 7 \\\hline\end{array}$

$\begin{aligned} B-6 &=7 \\ B &=7+6 \\ B &=13 \end{aligned}$

means  B = 3 , because B should be single digit 

$\begin{aligned} A-B-1 &=4 \\ A-3-1 &=4 \\ A-4 &=4 \\ A &=8 \\ \therefore \quad A=8, \quad B &=3 \end{aligned}$


Question 9

Sol :

$\begin{array}{r}2 A \\\times 3 A \\\hline B 7 A\end{array}$

A x A = A means A should be 1 or 5 or 0 

case (i) A = 0 

$\begin{array}{r}20 \\30 \\\hline 600 \\\hline\end{array}$ 
 ≠ B7A 

∴ This is not given number so A  ≠ 0

case (ii) A = 1 

$\begin{array}{l}21 \\31 \\\hline 21 \\\hline 23 \\\hline 251 \\\hline\end{array}$
 ≠ B71

∴ B ≠ 1
 
case (iii)

$\begin{array}{l}25 \\35 \\\hline 125 \\75 \\\hline 875\end{array}$

∴ B = 8 

$\therefore \quad A=5, \quad B=8$


Question 10


$\begin{array}{r}A B \\A B \\\hline 6 A B\end{array}$


B should either 0 , 1 or  5 

case (i) B = 0 

$\begin{array}{r}A 0 \\B 0 \\\hline 00 \\A B O \\\hline A B B \quad 0 \end{array}$
≠ 6AB

∴ A ≠ 0

case (ii) B = 1

(DIAGRAM SHOULD BE ADDED )
 ≠ 6AB 

case (iii)

B = 5 

A 5 
A 5 
------
X25   =  6AB   (∵ may be any number)

A = 2 (∵from rules by squar number)


Question 11


$\begin{array}{l}A A \\4 A \\\hline 9 A 4\end{array}$

A = 2

A = 2 is correct 


Question 12


(DIAGRAM SHOULD BE ADDED )


Question 13


(DIAGRAM SHOULD BE ADDED )


Question 14


(DIAGRAM SHOULD BE ADDED )





Exercise 5.3


Question 1


(i) 87035

it is divisible by 5 


(ii) 75060

It is divisible by both 5 and 10 


(iii) 9685

It is divisible by 5 


iv. 10730

It is divisible by both 5 and 10 



Question 2

i. 67894

It is divisible by '2'


ii. 5673244

It is divisible by both 2 and 4


iii. 9685048

It is divisible by 2 , 4 and 8


iv. 75379

It neither divisible by 4 nor by 8 



Question 3


i. 45639

sumot digits  = 4 + 5 + 6 + 3 + 9 =27

27 is divisible by both 3 and 9

∴ 45639 is divisible by both 3 or 9 


ii. 301248

Sum of digits = 3 + 0 + 1 + 2 + 4 + 8 = 18

18 is divisible by 9

∴ . 301248 is divisible by both 3 or 9 


iii). 567081

Sum of digits =5+6+1+0+8+1=27

27 is divisible by 9

∴ 567081 is divisible by either 3 or by 9 


iv.  345903

sum of digits =3+4+5+9+0+3=24

24 is divisibe by only'3'

∴ 345903  is divisibly by '3'only.


v. 345046

sum of digits =3+4+5+0+4+6=22

22 is neither divisible by 3 nor by 9

∴ 345046 is neither divisible by 3 nor by 9 



Question 4


i. 10835

Sum of odd daplace digits =5+8+1=14

Sum of even place digits =3+0=3

Disfference =14-3=11

∴ 10835 is divisible by 11


ii. 380237

Sum of odd place digits =1+2+8=17

Sum of even place digits =3+0+3=6

Difference =17-6=11

∴ 380237 is divisible by 11


iii. 504670

Sum of odol place digits =0+6+0=6

Sum of even place digits =7+4+5=16

Difference = 16 - 6 = 10 

∴ z504670 is not divisible by 11 


iv. 28248

Sum of odd place digits =8+2+2=12

Sum of even place digits =4+8=12

difference =12-12=0

 ∴ 28248 is divisible by 11 



Question 5


i. 15414

15414 is divisible by '2' because units place contain '4'

1+5+4+1+4=15 divisible by 3

  ∴ 15414 in divisible by 3

  ∴ 15414 is divisible by 6


ii. 213888

213888 is divisible by 2

Sum of digits =2+1+3+8+8+8=30 divisible by'3

  ∴ 213888 is  also divisible by 3

  ∴ 213888 is divisible by ' 6 '


iii. 469876

469876 is divisible by 2

Sumot digits =4+6+9+8+7+6=40 not divisible by '3'

  ∴ 469876 in not divisibie by 3

  ∴ 469876 in also not divisible by 6 '.



Question 6


i. 4618894875

Sum of digits of alternative blocks

875+618=1493  and 894+4=898

Dibterence $=595$ whicl is divisible by 7

   ∴ 4618894875 is divisible by 7 


ii. 3794856

Sum of digits of alternative blocks

856+3=859 and 794

difference = 65 which is not divisible by 7 

iii. 39823

sum of digits of alternative blocks

823 and 39

Difference 823-39=784 whichin divisible by 7

 ∴ 3794856 is not divisible by 7 


iii. 39823

sum of digits of alternative blocks

823 and 39

Difference 823-39=784 whichin divisible by 7

 ∴  39823 is divisible by ' 7 '.




Question 7


i. Given number = 34x 

it 34x is multiple of 3 then (3+ 4 + x ) should be multiple of '3'

3+ 4+ x = 9+x

so to make sum of digits multiple of 3 
x should be 0 , 3 , 6 , 9 


ii) 74 x 5284 is multiple of '3 'so

7+4+x+5+2+844=30+x

So to make sum of digits multiple of 3
x should be 0,3,6,9 .



Question 8


Given number 43Z3 

If 42 z 3 in multiple of  then (4+2+z+3)
Should be multiple of 9

4+2+z+3=9+z

To make sumob digits multiple of a
should be 0,9 .


   

Question 9



(i)  49*2207

If a number is divisble by 9 then its sum of digits 
should be divisble by 9 

4 + 9 + * + 2 + 2+ 0 + 7 = 24+*

The near by multiple of 9 is 27 so in place of the digit must be 27- 24 = 3


ii) 5938*623

"If a number is divisible by 9 then it's sum of digits
Should be divisible by 9

5 + 9 + 5 + 8 + * + 6 + 2 + 3= 36 + *

36 is multiple of 9 so * should be either 0 or 9 


Question 10


i) 97*542

As unit's place is 2 , number in divisible by 2
irrespective of digit in * 'Place.

if a number divisible by 3 then its sum of digits should be divisble by 3

9+7-1 x+5+4+2=27+x

∴ 27 in a multiple of 3 so in place of '*' Should be

either 0,3,6, or 9

In place of * 0 , 3 , 6 , 9 number makes given 
number divisible by 6 (As it is divisible by both 2 and 3)


(ii)  709*94

As units digit in 4 given number divisible by
2  irrespective of number  in place of *

To make given number divisible by ,3 the sum of digits should be divisible by 3 

7+0+9+*+9+4=29+*

To make divisible $29, *$ should be either 1,4,7 

$\therefore$ In place ot *, 1,4 or 7 digits make the given number divisible by 6. (As it is divisible by 2 \  and 3


Question 11


(i) given number $64 * 2456$

Sum of digits in odd places =6+4+*+6=16+*
Sum of digits in even places =5+2+4=11

Dilterence $=16+*-11=5+*$

* Should bí Becouse to make given number
divisible by 11 , the diffrerence in sum of digits in even
and odd place is either 0 or mulliple of 11 

∴ should be 6


(ii) 86*6194

sum of digits in even places = 9 + 6+ 6= 21

sum of digits in odd places = 4+ 1 + * + 8 = 13+ *

so the difference should be either 0 or multiple 
of 11 to be divisible by 11

8 - * =0

* = 8

∴ to make 86*6194 divisible by 11 , in place of * digits must be place 













0 comments:

Post a Comment