Sunday, April 18, 2021

ML AGGARWAL CLASS 8 CHAPTER 9 Direct and Inverse Variation Excercise 9.1

 Excercise: 9.1



Question 1 



(i) $\frac{5}{15}=\frac{1}{3}, \frac{8}{24}=\frac{1}{3}, \frac{12}{36}=\frac{1}{3}, \frac{15}{60}=\frac{1}{4}, \frac{18}{72}=\frac{1}{4}, \frac{20}{100}=\frac{1}{5}$

Here $\frac{x}{y}=\frac{5}{15}=\frac{8}{24}=\frac{12}{36}=\frac{1}{3} \neq \frac{15}{60}=\frac{18}{72}=\frac{1}{4} \neq \frac{20}{100}=\frac{1}{5}$

ஃ $x$ and $y$ are not proportional.


(ii) $\frac{3}{9}=\frac{1}{3}, \frac{5}{15}=\frac{1}{3}, \frac{7}{21}=\frac{1}{3}, \frac{9}{27}=\frac{1}{3}, \frac{10}{30}=\frac{1}{3} .$

Here $\frac{x}{y}=\frac{3}{9}=\frac{5}{15}=\frac{7}{21}=\frac{9}{27}-\frac{10}{30}=\frac{1}{3}=$ Constant

ஃ $x$ and $y$ are not proportional



Question 2



(i) $\frac{x}{y}=\frac{3}{45}=\frac{5}{y_{2}}=\frac{x_{3}}{90}=\frac{x_{4}}{120}=\frac{x_{5}}{y_{5}}=\frac{1}{15}=$ constant

$\begin{array}{l|l|l}\frac{5}{y_{2}}=\frac{1}{15} & \frac{x_{3}}{90}=\frac{1}{15} & \frac{x_{4}}{120}=\frac{1}{15} \\y_{2}=15 \times 5 & x_{3}=90 / 15 & x_{4}=120 / 15 \\y_{2}=75 & x_{3}=6 & x_{4}=8\end{array}$


$\frac{10}{y_{5}}$= $\frac{1}{15}$

$y_{5}=15 \times 10=150$

$\therefore x_{3}=6, x_{4}-8, y_{2} =75$



(ii) $\frac{x}{4}=\frac{4}{7}=\frac{8}{y_{2}}=\frac{x_{3}}{21}=\frac{20}{4_{4}}=\frac{28}{y_{5}}=$ constant

$\begin{array}{c|c|c}\frac{y}{7}=\frac{8}{y_{2}} & \frac{y}{7}=\frac{x_{1}}{21} & \frac{4}{7}=\frac{20}{y_{4}} \\4 y_{2}=7 \times 8 & x_{3}=\frac{4 \times 13}{7} & y_{4}=\frac{20}{4} \\y_{2}=\frac{7 \times 8}{4} & x_{3}=4 \times 3 & y_{4}=5 \times 7 \\y_{2}=14 & x_{3}=12 & y_{4}=35\end{array}$

$\frac{4}{7}=\frac{28}{45} \Rightarrow y_{5}=\frac{7 \times 28}{4} \Rightarrow y_{5}=49$

$\therefore y_{2}=14, x_{3}=12, y_{4}=35, \quad y_{5}=47$



Question 3



Let the cost of 5.8 mts of cloth be Rs x

Cost of 8 mts of cloth cost Rs 250 

so it is a case of direct variation 

i .e $\frac{8}{250}=\frac{5.8}{x}$

$x=\frac{250 \times 5.8}{8}=\frac{25 \times 58}{8}$

$x=181.25$

∴ Cost of 5.8 mts of cloth Rs 181.25




Question 4



Labourer earns Rs 672 per week i . e 7 days 

Labourer in 7 days he earns Rs 672

in 1 day he earn  Rs $\frac{672}{7}$

= Rs 96

Now in 18 days he earns Rs 96 $\times$ 18

= Rs 1458



Question 5



Given 175 dollars cost Rs 7,350

how many dollars cost Rs  24,24

Let the no of dollar be x

$\frac{x}{17 5}=\frac{24024}{7350}$\

x=572

$\therefore 572$ dollars cost Rs 24,024




Question 6



Let the number of kilometers travelled be 'x' 

car travels 675 km in 4.5 litres of petrol 

x km in 26 .4 litres of petrol

i.e $\frac{x}{67 \cdot 5}=\frac{26 \cdot 4}{4 \cdot 5}$

$x=\frac{26.4 \times 67.5}{4.5}$

$x=396 \mathrm{~km}$

∴  Number of kilometers travelled is 396 km




Question 7



Let the number of sheets of cardboard be $x$

thickness of 12 cardboard sheets is $45 \mathrm{~mm}$

Thickness of x cardboard sheets is 90 cm i .e 900mm

i .e $\frac{x}{12}=\frac{900}{45}$

$\begin{aligned} x &=\frac{900 \times 12}{45} \\ x &=240 \end{aligned}$

∴ Number of sheets of cardboard are 240



Question 8



Mast of shop model is 6cm 

Mast of achol shop is 9 m = 900cm 

length of achol ship is 33m = 3300cm

Let length of model ship is x

$\begin{aligned} \frac{6}{900} &=\frac{x}{3300} \\ x &=\frac{6 \times 33}{x y} \\ x &=22 \mathrm{~cm} \end{aligned}$

model length of ship = 22cm

 

Question 9



Mass of aluminium rod varies directly with length

M $\times$  L

Mass of $16 \mathrm{~cm}$ long rod has $192 \mathrm{~g}$

mals of $x \mathrm{~cm}$ longrod has $\operatorname{los} \mathrm{g}$

 $x=\frac{105 \times 16}{192}$

i.e $\frac{x}{16}=\frac{105}{192}$

$x=8.75 \mathrm{~cm}$

`105g mass has length of rod is 8.75cm



Question 10



Given Map scale $\mathrm{1cm}=20 \mathrm{~km}$

Anita Measures a distance from village A to

Village $B$ is $3.5 \mathrm{~cm}$

Actual distance between them is $3.5 \times 20$

$\begin{array}{l}=35 \times 2 \\ = & 70 \mathrm{~km}\end{array}$



Question 11



(i) Height of water tank is 23m 74cm i.e 2375 cm

length of shadow is 20m i .e 2000cm

if height of tree is 9 m 50 cm i .e 950 cm

length of shadow is 'x' = ?

i.e
 $\begin{aligned} \frac{x}{2000} &=\frac{950}{2335} \\ x &=\frac{950 \times 2000}{2375} \\ x &=800 \mathrm{~cm} \mathrm{i .e 8m} \end{aligned}$

Length of Shadow is 8 m


(ii) if length of shadow is 12m = 1200 cm

Height of free = ? Let = 'x' 

$\frac{x}{2375}=\frac{1200}{2000}$

$x=\frac{1200 \times 2375}{2000}$

$x=1425 \mathrm{~cm}$ i.e $14 \mathrm{~m}$ 2 cm

Heigth of free is $14 \mathrm{~m} 25 \mathrm{~cm}$ hight



Question 12



Eaining of $5 \mathrm{men}=$ Earing of 7 women

Earning of $1 \mathrm{man}=$ earing of $\frac{7}{5}$ women

Earing of $10 \mathrm{men}=$ earning of $\left(\frac{7}{8} \times 10\right)$ women

$=$ earing of $14 \mathrm{wom} \mathrm{en} .$

Earning of 10 men and 13 women = earning of (14 + 13 ) women

= earning of 27 women

Let 10 men and 13 women i .e 27 women earn ₹ x in a day 

Note that more women will earn more per day 

hence , 10 men and 13 women will earn Rs 2025 in a day 




 Excercise: 9.2

Question 1



(i) more speed , lets time taken by train to corer a fixed distance 

Speed and time or inversely proportional 


(ii) more people at work less time taken to finish work 

less people at work , more time taken to finish work 

i .e This is a inverse variation



Question 2



(i) $90 \times 10-900 ; 15 \times 60=900 ; 45 \times 20=900 ; 30 \times 30 \cdot 900 ;$
$20 \times 45=900$

i.e $90 \times 10=15 \times 60=20 \times 45=30 \times 30=45 \times 20=900=$ Constant

ie $x y=$ constant

$\therefore x$ and $y$ are in invesse variation


(ii) $75 \times 10=750: 45 \times 30=1350 ; 30 \times 25=750 ; 20 \times 35.750$

$10 \times 65=650$

ie $75 \times 10 \neq 45 \times 30 \neq 30 \times 25=20 \times 35 \neq 10 \times 15 \neq$ Constant

ஃ $x$ and $y$ are not in invesse variation



Question 3



Given volume inversely proportional to pressure 

$V \alpha \frac{1}{p}$

i.e $P V=$ constant

Volume of a mass = 630 $c m^{3}=V_{1}$

pressure of mercury $=360 \mathrm{~mm}=p_{1}$

if volume is $720 \mathrm{~cm}^{3}$, pressur $9 p_{2}=9$

$p_{1} v_{1}=p_{2} v_{2}$

p = 315 mm

∴ prssure of mercury = 315mm



Question 4


No of children are 20 

each received 4 sweets 

∴ Total no of sweets are 20 $\times$ 4 = 80 sweets 

Given number of children reduced by 4 i .e 20 - 4 = 16 

Now 16 (hildren were present

$\therefore$ if is a case of invesse Variation

$\therefore$ each children get $\frac{80}{16}$ sweets i.e 5 sweets




Question 5



pooja has money to buy 36 oranges at the rate

of $24.5$ per orange i.e

She has money $36 \times 4.5$

=₹ 162

Now the price of orange is increased by 90 paise

i.e New price of orange is $4.50+0.90={Rs } 5.40$

Now she takes only $\frac{162}{5.4}$ oranges

i.e 30 oranges only




Question 6



In 8 days, numer of men requived to construct a

wall =12

In 6 days, how many. were required ?

ie No of men required $=x$.

$x=\frac{8 \times 12}{6}$

$x=16$

$\therefore 16$ men required fo constract a wall in 6 days




Question 7



Total no fof taps = 8 

these takes 27 minutes to fill a tank 

 out of 8 , 2 taps go out of order i .e 

the remainig no of taps are 6 

Let the 5 taps taken x minutes 

Note that lesser the number of pipes, more will be the 

time required to fill the tank '

So , it is a case of inverse variation

$\begin{aligned} 8 \times 27 &=x \times 6 \\ x &=\frac{8 \times 27}{6} \end{aligned}$

x = 36 minutes

∴ Time taken to fill the tank by 6 taps is 36 minutes 



Question 8



No. of person contact to complete a part of stadiums 

in  9 months = 560 persons

Let the no of persons to complete a part of stadium

in 5 months = x

more month , less person are required

i.e It is a case of inverse variation 

$9 \times 560=8 \times x$

$x=9 \times 70$

$x=630$

Now , no of persons extra required is 630- 560 = 70 persons 




Question 9



A batch of bottles were packed in 30 boxes with 10 bottles 

in each box 

Now 12 bottles in each box can be filled or packed in 

how many boxes , Let it be x 

More boxes ,less bottles were packed 

i.e It is a case of inverse variation

$30 \times 10=12 \times x$

$n=\frac{30 \times 10}{12}$

$x=25$

∴ 25 boxes with 12 bottles in each box



Question 10



Vandana takes 24 mimutes to reach school wilt a

Speed of 5 km /h

Now, how mach speed is required fo reach school with

in 20 minutes

More time less speed is required 

i.e it is case of inverse variation

∴ Let the speed b 'x' 

$\begin{aligned} 5 \times 24=& x \times 20 \\ x &=\frac{5 \times 24}{20} \\ & x=6 \mathrm{~km} / \mathrm{h} \end{aligned}$

∴ Speed required = 6 km/h



Question 11



After 15 days , the food for 80 soldiers for (60 - 15)days 

i.e 45 days 

So the number of soldiers in ford 80 + 20= 100

Let the food last for x days , whe these are 100

soldiers in food 

note that more the number of soldiers in ford , the sooner the food exhaust

$\begin{aligned} 80 \times 45=& 100 \times x \\ x=& \frac{80 \times 45}{100} \\ x=36 \end{aligned}$

∴ The food will last for 36 days 




Question 12



1200 Soldiers in a fort had enough food for 28 days 

after 4 days some soldiere were sent be x 

$\therefore$ The food lasted for 32 more days

If is a case of invesse variation

$\begin{aligned} 1200-x &=\frac{1200 \times 24}{32} \\ 1200-x &=900 \\ x &=1200-900=300 \end{aligned}$

$\therefore$ No of Soldier were left = 300. Soldiers




 Excercise: 9.3




Question 1



Farmer can reap a field in 10 days 

his wife can reap it in 8 days 

Farmer one day work i,e reap a field is $\frac{1}{10} .$

His wife one day work is $\frac{1}{8}$

Fasmer and wife can completed if Key work together 

i.e $\frac{1}{10}+\frac{1}{8}$

$\quad=\frac{4+5}{40}=\frac{9}{40}$

∴ Both together can complete in $\frac{40}{9}$ days



Question 2



Since A can complete $\frac{1}{5} k$ of work in 2 days

$\therefore$ A's one day work $=\frac{1}{2}$ of $\frac{1}{5}=\frac{1}{2} \times \frac{1}

{5}=\frac{1}{10}$

Since $B$ Can Complete $\frac{2}{3}$ nd of wok in 8 days

$\therefore B's $ is one day wak $=\frac{2}{3}$ of $\frac{1}{8}=\frac{2}{3} \times \frac{1}

{84}=\frac{1}{12}$

One days work of A and B together  = $\frac{1}{10}+\frac{1}{12}$

$\frac{6+5}{60}=\frac{11}{60} .$

∴ A and B working together can complete the work in $\frac{60}{11}$ days




Question 3



'A' tap can fill a tank in 20 minutes 

A tap one minutes can fill $\frac{1}{20}th $ of tank

'B" Tap can fill a tank in 12 mint

In one minute, Tap $B$ can fill $\frac{1}{12}th$ of Tank

If both taps were opened then

In one minutes, $\operatorname{Tap} A$ and $B$ can fill $=\frac{1}{20}+\frac{1}{12}$

$=\frac{3+5}{60}$

$=\frac{8}{60}$

∴ Both A and B will fill the tank in $\frac{60}{8}$ minutes 



Question 4



A can do a work in 6 days

B Can do a work in 8 days

A's one day wark $=\frac{1}{6}$

B's one day work $=\frac{1}{8}$

One days work of A and B Together = $\frac{1}{6}+\frac{1}{8}$

$\frac{4+3}{24}=\frac{7}{24}$

∴ 2 days work of A and B together = $2 \times \frac{7}{24}=\frac{7}{12}$

∴ Remaining work = $1-\frac{7}{12}=\frac{5}{12}$

∴ The no. OF days taken by  A to finish the remaining work 

$=\frac{\text { work } to \text { be done }}{\text { A's one day work }}=\frac{5 / 12}{1 / 6}=\frac{5}{122} \times6 =\frac{5}{2}$ day

Hence , A will complete the remaining work in $\frac{5}{2}$ days



Question 5



A can do a piece of work in 40 days 

A's one day work = $\frac{1}{40}$

He works for 8 days , he complete $8 \times \frac{1}{40}=\frac{1}{5} th$ wok

Remaining work = $1-\frac{1}{5}=\frac{4}{5} .$

B finisher remaining work in 16 days 

i.e B finisher $\frac{4}{5} th$ wok in $16 \times \frac{5}{4}$ day

$=20$ days

$\begin{aligned} A \text { and } B \text { Can completed in } &=\frac{1}{20}+\frac{1}{40} \\ &=\frac{2+1}{40}=\frac{3}{4{0}} . \end{aligned}$

∴  It takes $\frac{40}{2}$ days if they do together.



Question 6



A and B seperately do work in 10 and 15 days 

As's one day work $=\frac{1}{10}$ days

B's one day work $=\frac{1}{15}$ days

$\begin{aligned} A \text { and } B \text { one's day wak } &=\frac{1}{10}+\frac{1}{15} \\ &=\frac{3+2}{30}=\frac{5}{30}=\frac{1}{6} . \end{aligned}$

A completed the remaining work in 5 days 

i .e $\frac{1}{2}$ of the work had completed 

Remaining half work had completed by A and B together

i.e $\frac{1}{2} \times 6=3$ days



Question 7



1 women or 5 gilis take 17 days to complete a piece

of work

Since 3 women's work = 5 girls work

1 woman's work $=\frac{5}{3}$ girl's work

$: 7$ women work $=\frac{5}{3} \times 7$ i.e $\frac{35}{3}$ gins work

∴ 7women and 11 girls work $=\frac{35}{3}+11$ i .e $\frac{68}{3}$ girls work

Since 5 girls can do work in 17 days 

∴ 1 girl can do work in $5 \times 17$ i .r 85 days 



$\frac{68}{3}$  girls can do the work in $\frac{85}{68 /3}$ days 

$\frac{83 \times 3}{68}$  

$=\frac{15}{4}$ days


Hence 7 women and 11 girls working together will complete 

the work in $\frac{15}{4}$ days




Question 8



A's one day work $=\frac{1}{10}$

B's one day wok $=\frac{1}{15}$.

So they divide money in the ratio $\frac{1}{10}: \frac{1}{15}$

i.e $\frac{1}{10} \times 30: \frac{1}{15} \times 30$ i.e $3: su m=3+2=5$

A's share = $\frac{3}{5} \times 3500=3 \times 700=2100$

B's share : $\frac{2}{5} \times 3,500=2 \times 700=1400$




Question 9



A's one day wak $=\frac{1}{2}$

B's one day work $r \frac{1}{6}$

C's one day work $=\frac{1}{3}$.

A, B , C one's days work together =$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$

$\frac{3+2+1}{6}=\frac{6}{6}=1$

$A, B, C$ completed their work by working togeter in 1 day

So they divide the maney in the ratio $\frac{1}{2}: \frac{1}{6}: \frac{1}{3}$

i.e 
$\begin{aligned} & \frac{1}{2} \times 6: \frac{1}{6} \times 6: \frac{1}{3} \times 6 \\=& 3: 1: 2 \end{aligned}$

Sum of these terms = 3+ 1+ 2 + 6 

A's share $=\frac{3}{8} \times 960=3 \times 160=480$

B's share $=\frac{1}{6} \times 960=1 \times 160=160$

c's share $=\frac{2}{6} \times 960=2 \times 160=320$



Question 10



A and B , c together do a piece of work in 15 days 

one's days work of A,B and C together  is $\frac{1}{15}$

B's one day work $=\frac{1}{30}$

C's one day work $=\frac{1}{40}$.

A's one day work =$\frac{1}{15}-\left\{\frac{1}{30}+\frac{1}{40}\right\}$

$\frac{1}{15}-\left\{\frac{4+3}{120}\right\}$

$\frac{1}{15}-\frac{7}{120}$

$=\frac{8-7}{120}$

A's one day work = $\frac{1}{120}$

∴ A alone do the work in 120 days 




Question 11



A's one day +B's one day + C's one day =$\frac{5}{24}$

A's one day $+C$ 's one $d a y=\frac{1}{8}$.

B's one day work 
$\begin{aligned}=& \frac{5}{24}-\frac{1}{8} \\ &=\frac{5-3}{2 4} \\ &=\frac{2}{24}=\frac{1}{12} \end{aligned}$

∴  B alone can plough field in 12 days



Question 12



A's one day work +B' s one ofay work $=\frac{1}{10}$

B's one day work +C's is one day work $=\frac{1}{15}$

C's one day wodr +A's As one day work $=\frac{1}{12}$

2 (A's one day work + B's one days work +C's one day work)

$=\frac{1}{10}+\frac{1}{15}+\frac{1}{12}$

$=\frac{6+4+5}{60}=\frac{15}{60}-\frac{1}{4}$


A's one day work + B's one day work + C's one day work = $\frac{1}{4} \times \frac{1}{2}$

$=\frac{1}{8}$

$\therefore A, B, C together can complete in 8 days

A's one day work = $\frac{1}{8}-\frac{1}{15}$

$=\frac{15-8}{120}=\frac{7}{120}$

∴ A alone takes $\frac{120}{7}$ days

B's one day work =$\frac{1}{8}-\frac{1}{12}$

= $\frac{3-2}{24}=\frac{1}{24}$

B alone takes 24 days 

C's one day work $=\frac{1}{8}-\frac{1}{10}$

$=\frac{5-4}{40}=\frac{1}{40}$

C alone takes 40 days




Question 13



Pipe fill a tank in 12 hour

In one hour , pipe fills $\frac{1}{12}$ of the tank

A waste pipe is left opened and filled in 16 hour

In one hour , it fills $\frac{1}{16}$ of tank

∴ portion of tank emptied by the waste pipe 

in one hour = $\frac{1}{12}-\frac{1}{16}$

=$\frac{4-3}{48}$

$=\frac{1}{48}$

∴ Waste pipe takes 48 hours to empty the tank 































































































0 comments:

Post a Comment