Friday, April 16, 2021

ML AGGARWAL CLASS 8 CHAPTER 8 Simple and Compound Interest Excercise 8.1

 Exersice 8.1



Question 1


Principal (P)=4000


Rate of Interest $(R)=7.5 \%$


Time $(T)=$ 3years and 3 months


$\begin{aligned} 1 \operatorname{month}&=\frac{1}{12} \text { year } \\ 3 \text { months } =\frac{3}{12} \text { year } &=\frac{1}{4} \text { year } \\ \therefore \text { Time } &=3 \cdot \frac{1}{4} \text { years }=\frac{13}{4} \text { years } \end{aligned}$


Simple interest $(I)=\frac{P T R}{100}$


Simple interest (I) $=975$


Amount = prinicipal + interest 


= 4000 + 975 


Amount = 4975 




Question 2


Given 

simple interest (I) = 170 .10 

Time (T) = 2 year and 3 month 

(T) $2 \cdot \frac{3}{12}=2 \cdot \frac{1}{4}=\frac{9}{4}$ years

Rate (R)= 6% 

$\begin{aligned} P &=\frac{I \times 100}{R \times T} \\ &=\frac{170.10 \times 100}{6 \times \frac{9}{4}} . \end{aligned}$

Principal == p = 1260 



Question 3



Given 

principal = 800

simple interest (I) = 130 

Time = 2 year and 6 months 

Time = $2 \cdot \frac{6}{12}=2 \cdot \frac{1}{2}=\frac{5}{2}$ years

$\begin{aligned} R &=\frac{I \times 100}{P \times T} \\ &=\frac{130 \times 100}{800 \times \frac{5}{2}} \\ R &=6.5 \% \end{aligned}$

hence , the required rate of interest = 6.5% 



Question 4



Given

           principla (p) = 3.3 lakhs 


                        p = 330000

rate (R) 6.5 % 

$\begin{aligned} \text { Simple Interest } &=75075 /-\\ \text { Time }(T) &=\frac{I \times 100}{P \times R} \\ &=\frac{75075 \times 100}{330000 \times 6.5} \\ T &=3.5 \text { years } \end{aligned}$

Hence , the required time = 3 years and 6 months 




Question 5



(i) simple interest (I) = 2356.25 

Time $\begin{aligned}(T) &=2 . \frac{1}{2} \text { yeers } \\ T &=\frac{5}{2} \text { years } \\(R) &=7 \cdot \frac{1}{4} \% \\ R &=\frac{29}{4}-1 . \\ P=& \frac{I \times 100}{T \times R} \\=& \frac{2356.25 \times 100}{\frac{5}{2} \times \frac{29}{4}} \\ P &=13,000\end{aligned}$

Hence , the required principal is Rs 13000 


(ii)  Given 

rate (R) = 4 %

$\begin{aligned} \text { Time }(T) &=3 \text { years and } 3 \text { month } s \\ &=3 \cdot \frac{3}{12}=3 \cdot \frac{1}{4}=\frac{13}{4} \\ T &=\frac{13}{4} \text { years } \end{aligned}$

Final Amount $=113001-$

Fimel Amount $=$ Principal $(D)+$ Simple interest $(I)$

$11300=P+\frac{P T R}{100}$

$11300=P\left(1+\frac{T R}{100}\right)$

$11300=P\left(1+\frac{\frac{13}{4} \times 4}{100}\right)$

$11300=P\left(\frac{113}{100}\right)$

$P=11300 \times \frac{100}{113}$

$P=10,000$

Hence , the required principal is 10 ,000



Question 6


Given    

           Interest rate (R) = $13 \frac{1}{3}=\frac{40}{3}$ %

Final amount = 3 $\times $principal (p) 

$\begin{aligned} P+I &=3 P \\ I &=3 p-P \\ I &=2 P \\ \frac{P T R}{100} &=2 P \quad\left(\because I=\frac{P T R}{100}\right) \\ T &=\frac{200}{R} \\ T &=\frac{200}{\frac{40}{3}} \end{aligned}$

Times = T = 15 years 

Hence , the required time to triple itself for given 

Interest rate is 15 years.



Question 7


Given  

  principal $\left(P_{1}\right)=4050$

Final Amount $=4576.501$ -

$\begin{aligned} \text { Prinupal }+\text { Simple Interest }=4576.50 \\ 4050+I_{1} &=4576.50 \\ I_{1} &=526.50\\ \text { Time }=& 2 \text { years. } \end{aligned}$

$I_{1}=\frac{P_{1} T_{1} R}{100}$

$526.50=\frac{4050 \times 2 \times R}{100}$

$R=6.5 \%$ Per Anum

Now we have to calculate simple interest for 1 lakh for 3 years at a rate of 65 % per anum 

$\begin{aligned} I_{2} &=\frac{P_{2} T_{2} R}{100} \\ I_{2} &=\frac{1,001000 \times 3 \times 6.5}{100} \\ I_{2} &=19500\end{aligned}$

$\begin{aligned} \text { Total Amount } &=P_{2}+I_{2} \\ &=1,00,000+19,500\\ &=1,19,500\end{aligned}$

∴ Hence , the 1 lakh will amount Rs 1,19,500 for 3 years




Question 8


Let the money invested to be Rs p 

Given

Prinupel $P_{1}=P$

Rate $R_{1}=7.5-1$

Time $T_{1}=2$ years

Let Interest $=I_{1}$

Principal $P_{2}=₹ 9600$

Rate $R_{2}=10-1 .$

Time $=3$ years and 6 months.

. Time $T_{z}=3 \cdot \frac{1}{2}=\frac{7}{2}$ years

let Simple Interest $=I_{2}$

$\therefore \quad I_{1}=2 \times I_{2}$

$\frac{P_{1} T_{1} R_{1}}{100}=2 \times \frac{P_{2} T_{2} R_{2}}{100}$

$\frac{P \times 2 \times 7.5}{100}=\frac{2 \times 9600 \times \frac{7}{2} \times 10}{100}$

P = Rs 4,4800 

= Rs 44,800

Hence the required sum of money is Rs 44,800



Exersice 8.2



Question 1


Given 

principal p = 6000

Rate R = 10 % 

Time T = 2 Year 

Interest for first year = $\frac{P T R}{100}$

$\frac{6000 \times 4 \times 10}{100}$

$I_{1}$ = 6000

Amowt at the end of the Girst year $=6000+600$

Principal for second year $=266001-$

Interest for Second year $=\frac{P T R}{100}$

$=\frac{6600 \times 1 \times 10}{100}$

$I_{2}=660$

$\begin{aligned} \text { Amount at the end of second yean } &=6600+660 \\ &=7260 /-\end{aligned}$

∴ Compound interest for 2 year = final amount - (original) principa 

= 7260 - 6000

= 1260

 

Question 2


 Sol- 
 $\begin{aligned} \text { Principal for first } \operatorname{year}\left(P_{1}\right)=& ₹ 1875 /-\\ \text { Rate }(R)=4 \% & \text { Time }(T)=2 \text { years. } \\ \text { Interest for first year }\left(I_{1}\right)=\frac{P_{1} \times T_{1} \times R}{100} \\=& \frac{1875 \times 1 \times 4}{100} \\ I_{1}=& ₹ 75\end{aligned}$

Amount at the end of first year $=1875+75$

=1950

Interest for Second your $I_{2}=\frac{1950 \times 1 \times 4}{100}$

$I_{2}=78 /-$

$\therefore$ Compound Interest after 2 year $=I_{1}+I_{2}$

$\begin{array}{l}=75+78 \\=153\end{array}$

 Hence, Salma has to pay 2153 as compound Intrest to the Mahila samit



Question 3


Principal for first year $\left(R_{1}\right)=12000$

$Rate=10 \%, \text { Time }=3 \text { yars }$

$\begin{aligned} \text { interest for first year }\left(I_{1}\right) &=\frac{12000 \times 1 \times 10}{100} \\ I_{1} &=₹ 1200\end{aligned}$

Total amout at the end of first year $12000+1200$

$=13200$

principal for second year = Rs 13200 

interest for second year $I_{2}=$ $\frac{13200 \times 1 \times 10}{100}$

=₹ 1320 

Total amount at the end of the second year 

is 13200 + 1320 = Rs 14520


princial amount for third year = Rs 14520

Interest for third year $I_{3}=\frac{14520 \times 1 \times 10}{100}$

$I_{3}=₹ 1452$

$\begin{aligned} \text { Total amount at the end of third year } &=14520+1452 \\ &=₹ 15972 \end{aligned}$

$\begin{aligned} \text { Compound Interest for } 3 \text { years } &=\text { Final amount }-\text { Principal }\left(P_{1}\right) \\ &=15972-12000 \\ &=23972 \end{aligned}$

Hence , At the end of 3 year jacob will get total 

Amount as Rs 15972 and compound interest Rs 3972 



Question 4


Given

Prineipal $\left(P_{1}\right)=46875$

Rate $(R)=4 \%$, Time $=3$ years.

principal amount for first year $\left(p_{1}\right)$ = Rs 46875 

Rate (R) = 4 % time = 3 years


(i) Interest for first year $\left(I_{1}\right)$

$I_{1}=1875$

$\begin{aligned} \text { Total amount at the end of Girst year } &=46875+1875 \\ &=48750 \end{aligned}$

Principal amount for second $\operatorname{year}\left(R_{2}\right)=$ 2 48750

Interest for Second year $\left(I_{2}\right)=\frac{48750 \times 4 \times 1}{100}$

$I_{2}$= Rs 21950


(ii) Total amount at the end of second year

= 48750 + 1950

= Rs 50700

principal for third year $\left(P_{3}\right)$=  Rs 50700



(iii) $\begin{aligned} \text { Interest for third year }\left(I_{3}\right) &=\frac{50700 \times 1 \times 4}{100} \\ &=2028 \end{aligned}$


Hence ,

i. The interest for first year $=21875$

ii. The Amourt standing to his credit at the end of

second year is  Rs 50700

iii. The interest for third year =Rs  2028




Question 5



Given 

Principal $=260001-$, Time $=3$ years

Rate $=10$

PrinCIpal amout for first $\operatorname{year}\left(P_{1}\right)=26000$

Interest for first year $\left(I_{1}\right)=\frac{6000 \times 1 \times 10}{100}$

Total amount at the end of first year $6000+600$

$=6600$

Principal for second year $\left(P_{2}\right)=6600$


(i)  Interest for second year $\left(I_{2}\right)=\frac{6600 \times 1 \times 10}{100}$

$I_{2}=₹ 660$

Total amount at the end of second year $=6600+660$

$=7260$

$\begin{array}{ll}\text { Principal for third year } & \left(P_{3}\right)=27260 \\ \text { Interest for Third year } & \left(-I_{3}\right)=\frac{7260 \times 1 \times 10}{100} \\ & I_{3}=726 /-\end{array}$


(ii) Total amount at the end of third year = 7260 + 726

= Rs 7986

 hence 

(i) Compound interest for second year = Rs 660

(ii) Total amount at the end of the third year = Rs 7986




Question 6



principal amount for first year $\left(P_{1}\right)$=Rs 5000

Rate of interest for first year $\left(R_{1}\right)=6 \%$

$\begin{aligned} \text { Interest for first year } &=\frac{5000 \times 1 \times 6}{100} \\\left(I_{1}\right) &=300 \end{aligned}$

$\begin{aligned} \text { Total amout at the end of first year } &=5000+300 \\ &=5300\\ \text { Principal amourt for second year }\left(P_{2}\right)=& 5300 \\ \text { Rate of Interest for Second year} &=8 \% . \\ \text { Compomd Interest for Second year } &=\frac{5300 \times 1 \times 8}{100} \end{aligned}$

$\left(I_{2}\right)=424$

$\begin{aligned} \text { Total amount at the endof seconed year } &=5300+424 \\ &= 5724 \end{aligned}$

$\begin{aligned} \text { Compound interest for } 2 \text { years } &=\text { final amount }-\text { Principal }\left(P_{1}\right) \\ &=5724-5000 \\ &=₹ 724 \end{aligned}$

Hence total amount after 2 year = Rs 5724

Compound interest for 2 year = Rs 724




Question 7



Given principal = Rs 20000

Time = 2 year 

Rate of interest = 8%

Simple Interest $(I)=\frac{P T R}{100}$

$=\frac{20000 \times 2 \times 8}{100}$

Simple Interest (I.) $=33200$

Let compound interest as 'C'

Interest for first year = $\frac{20000 \times 1 \times 8}{100}$

$I_{1}=1600$

Total amount at the end of first year = 20000+ 1600

= 21600

Compound interest for 2 year = $I_{1}+I_{2}$

$=1600+1728$

$C=3328$

∴ Difference between the compound interest and 

simple interest is (c - I ) =  3328 - 3200

 = Rs 128

 


Exersice 8.3



Question 1



(i) Given 

principal = Rs 15000

Time = 2 year ; n = 2

Rate of interest = 10 % 

Amount 
$\begin{aligned}(A) &=P\left(1+\frac{R}{100}\right)^{n} \\ &=15000\left(1+\frac{10}{100}\right)^{2} \end{aligned}$

Total Amount $(A)=18150$

Compomd interest $C=A-P$

$=18150-15000$

Compound interest $=3150$

Hence , amount is Rs 18150 and compound interest Rs 2496


(ii) Given 

principal (p) = Rs 156250 

Time $(n)=1 \frac{1}{2}=3 / 2$

Rate of Interest $(R)=8%$ per anum

Compomd half yearly so

So

$R=\frac{81}{2}=4 \%$ (HalF YEARLY)

n =$\frac{3 / 2}{1 / {2}}=3$

A =  $P\left(1+\frac{R}{100}\right)^{n}$

$=156250\left(1+\frac{4}{100}\right)^{3}$

A=Rs 175760

$\begin{aligned} C \cdot I &=A-P \\ &=175760-156250 \\ C . I &=19510 \end{aligned}$

Hence , Total amount Rs 175760 and compound interest is Rs 19510


(iii) Given 

P = 100000, Time = 9 months , R = 4 % P.A

Compounded for quaterely means  3 months 

R= $\frac{4}{4}$=1% per 3 months

$n=\frac{9 \mathrm{mon} \mathrm{th} \mathrm{s}}{3 \text { monits }}=3 .$

$\begin{aligned} \text { Amount }(A)^{\circ} &=P\left(1+\frac{R}{100}\right)^{n} \\ &=100000\left(1+\frac{1}{100}\right)^{3} \\ A &=103030.1 \\ C &=A-P \\ &=103030.1-100000 \\ C &=3030.1 \end{aligned}$

Hence , amount Rs 103030.1 and compound interest Rs 3030.1



Question 2



Given 

principal (p) = Rs 4800

rate of interest (R) = 5% p.a , Time = 2 years

simple interest (S.I) = $\frac{P T R}{100}$

$\begin{aligned} &=\frac{4800 \times 2 \times 5}{100} \\ \text { S.I } &=480 \end{aligned}$

Compomded interest $(c \cdot I)=A-P$

$\begin{aligned} \text { Amout }(A) &=P\left(1+\frac{R}{100}\right)^{n} \\ &=4800\left(1+\frac{5}{100}\right)^{2} \\ A &=5292 \end{aligned}$

$\begin{aligned} \text { Compound interest } C . I &=A-P \\ &=5292-4800 \\ C . I &=492 \end{aligned}$

$\begin{aligned} \text { Difference between C. I .E  S.I } &=492-480 \\ &=12 \end{aligned}$




Question 3


Principal $(P)=23125$

Rate interest for first year $\left(R_{1}\right)=4%$

Rate of interest for second year $\left.R_{2}\right)=51$

Rate of interest for Third year $\left(R_{3}\right)=61$

$\begin{aligned} \text { Amout }(A)=& P\left(1+\frac{R_{1}}{100}\right)\left(1+\frac{R_{2}}{100}\right)\left(1+\frac{R_{3}}{100}\right) \\=& 3125\left(1+\frac{4}{100}\right)\left(1+\frac{5}{100}\right)\left(1+\frac{6}{100}\right) \\ A &=73617.25 \\ \text { Compound Interest }(C . I) &=A-P \\ &=3617.25-3125 \\ C . I &=492.25 \end{aligned}$



Question 4



Principal =26400

Rate of interest (R)=15%  p.a

Time =2 years and 4 months

Amount $(A)=P\left(1+\frac{R}{100}\right)^{n}\left(1+\frac{x \cdot R}{100}\right)$

$n=2 ; x=\frac{4}{12}$       when time infraction

$A=26400\left(1+\frac{15}{100}\right)^{n}\left(\begin{array}{c} \\ \left(1+\frac{\frac{4}{12} \times 15}{100}\right)\end{array}\right.$

 A = Rs 36659.7 

Hence , kamala has to pay Rs 36659.7 to clear the law 




Question 5


Principal $(P)=218000$

Rateof interest $(R)=8 \% .0 .0$

Time $=2$ year

Simple interest $(s \cdot I)=\frac{P T R}{100}$

$=\frac{18000 \times 2 \times 8}{100}$

$S.I=2880$

Compound Iuterest $=A-P$

Amomt $A=P\left(1+\frac{R}{100}\right)^{n}$

$=18000\left(1+\frac{8}{100}\right)^{2}$

A = Rs 20995.2

 $\begin{aligned} \text { Compound interest }(C \cdot I) &=20995.2-18000 \\ &=2995.2 \end{aligned}$

Difference between C . I . E   S . I = 2995.2 - 2880 

∴ The extra amount anil has to  pay in Rs 115.2 



Question 6


Given 

Prinupal (P)=75000

Rateof interess $=12 \% \mathrm{p} . a$

(i) Compounded annually

Time $=1 \frac{1}{2}$ year

$n=1 ; x=1 / 2$

$\begin{aligned} \text { Amout }(A) &=P\left(1+\frac{R}{100}\right)^{n}\left(1+\frac{x \cdot R}{100}\right) \\ &=75000\left(1+\frac{12}{100}\right)\left(1+\frac{\frac{1}{2} \times 12}{100}\right) \\ A_{1} &=₹ 89040 \end{aligned}$


(ii) Compounded half - yearly 

$n=\frac{3 / 2}{1 / 2}=3$

$A=P\left(1+\frac{R}{100}\right)^{n}$

$=75000\left(1+\frac{12}{100}\right)^{3}$

$A_{2}=105369.6$

Hence , mukesh has to pay more when compounded 

half yearly than that of when compounded yearly 


Question 7 



Given 

Principal $(P)=10000$

rate of interest $(R)=7 \%$. $a$

(i) Amount received by aryman at end of 2 years

$\begin{aligned} A &=P\left(1+\frac{R}{100}\right)^{n} \\ &=10000\left(1+\frac{7}{100}\right)^{2} \\ A &=11449 \end{aligned}$


(ii) interest for 3rd year 

Amount received at the end of 3rd year 

$\begin{aligned} A_{3} &=P\left(1+\frac{R}{100}\right)^{3} \\ &=10000 \times\left(1+\frac{7}{100}\right)^{3} \\ A_{3} &=12250.43 \end{aligned}$

Interestfor 3rd year = $A_{3}-A_{2}$

=12250.43-11449 

=Rs 801.49

Hence , aryma receives interest for 3 rd year is Rs 801.49




Question 8


Given 

Amomt $(A)=9261$

Time $=3$ year : Compouned anually

Rate ofinterest $(R)=5 %$. p.a

n= 3 

$A=P\left(1+\frac{R}{100}\right)^{n}$

$9261=P\left(1+\frac{5}{100}\right)^{3}$

P=Rs 8000

Hence , the sum of money is Rs 8000



Question 9


Given 

Amount $(A)=2140608$

Time $=1 \frac{1}{2}$ years

Compomded halfs - yearly

n=3

Rate of interest = 8% p.a 

R = 4 % per half year 

$A=P\left(1+\frac{R}{100}\right)^{n}$

$140608=P\left(1+\frac{4}{100}\right)^{3}$

$P=\frac{140608}{1.124}$

P=Rs 125000

Hence the prinicipal amount is Rs 125000



Question 10



Given 

prinicipal (p) = Rs 2000

Total amount (A)= Rs 2315 . 25 

Time = 3 years : n = 3 (Compounded anually)

$A=P\left(1+\frac{R}{100}\right)^{n}$

$2315.25=2000\left(1+\frac{R}{100}\right)^{3}$

$1+\frac{R}{100}=\frac{21}{20}$

$\frac{R}{100}=\frac{1}{20}$

R=5% Per anum.

Hence , rate interest in 5 % per anum




Question 11


Given 

Princpal $(P)=₹ 40000$

Amout $(A)=₹ 46305$

Time $=1 \frac{1}{2}$ year

Compounded hall - yearly

$n=3$

$A=P\left(1+\frac{R}{100}\right)^{n}$

$46305=40000\left(1+\frac{R}{100}\right)^{3}$

$1+\frac{R}{100}=\frac{21}{20}$

$R=5 \%$ per half - year

$R=10 \%$ Pev Anum.

Hence , rate of interest 10 % per anum



Question 12



Given 

Amouit $(A)=217576$

Principal $(P)=₹ \quad 15625$

Rate of interest $=4 \times P . a$

$A=P\left(1+\frac{R}{100}\right)^{n}$

$17576=15625\left(1+\frac{4}{100}\right)^{n .}$

$1.1248=(1.04)^{n}$

Apply 'log' on boths side

$\begin{array}{c}\log _{e}(1.1248)=n \cdot \log _{e}(1.04) \\ n=3\end{array}$

Hence , the required time is 3 years



Question 13


Principal $=216000$

Amount $=218522$

Rate of interest $(R)=10 \%$ p.a

Compounded Semi. anually

$R=5 \%$ per halt - year

$A=P\left(1+\frac{R}{100}\right)^{n}$

$18522=16000\left(1+\frac{5}{100}\right)^{n}$

$(1 \cdot 05)^{\eta}=1.1576$

Apply 'log' on boit sides

$n \cdot \log _{e}(1.05)=\log _{e}(1.1576)$

n=3

$\therefore$ Time $=3 \times \frac{1}{2}=1 \frac{1}{2}$ fran.

ஃ The required time =$1 \frac{1}{2}$ years.
































































0 comments:

Post a Comment