Exercise 7.1
SOLUTION 1
(i) $356 \%$
$\Rightarrow \frac{356}{10025}=\frac{89}{25}$
(ii) $2 \frac{1}{2}-1$
=$\frac{5}{2} \%$
=$\frac{8}{2 \times 100}=\frac{1}{40}$
(ii)
= $\begin{array}{ll} & 16 \frac{2}{3} \\ \Rightarrow & \frac{50}{3} \% \\ & \frac{50}{3 \times 100}=\frac{1}{6}\end{array}$
SOLUTION 2
(i) $\frac{3}{2}$
= $\frac{3}{2} \times 100 \%=150 \%$
(ii) $\frac{9}{20}$
= $\left(\frac{9}{20} \times 100\right) \%=36 \%$
(iii) $1 \frac{1}{4}$
$\left(\frac{5}{4} \times 100\right) \%=125 \%$
SOLUTION 3
(i) $\frac{3}{4}$
$\Rightarrow 0.75$, Decimal.
when we converting decimals into percentages
then $\Rightarrow \quad 0.75 \times 100$
$\Rightarrow \quad 75 \%$
(ii)
$\begin{aligned} & \frac{5}{8} \\ \Rightarrow & 0.62 \\ \Rightarrow & 0.625 \times 100 \\ \rightarrow & 62.5 \% \end{aligned}$
(iii)
=$\frac{3}{16}$
=$0.1875$
=$0.1875 \times 100$
=$18.75 \%$
SOLUTION 4
(i)
=$\frac{2}{3}$
$\Rightarrow 0.6666 \quad \rightarrow$ Decimal
while converting decimals into percentage we
have to multply with 100
$\Rightarrow \quad 0.6666 \times 100$
$\Rightarrow \quad 66.66 \%$
(ii)
$\begin{aligned} & \frac{5}{6} \\ &=0.83333 \\ \Rightarrow & 0.8333 \times 100 \\ \Rightarrow & 83.33 \% \end{aligned}$
(iii)
$\begin{aligned} & \frac{4}{7} \\ \rightarrow & 0.5714 \\ &=0.5714 \times 100 \\ \Rightarrow & 57.14 \% \end{aligned}$
SOLUTION 5
(i)
$\begin{aligned} & 17: 20 \\ \Rightarrow & \frac{17}{20} \\ \Rightarrow & \frac{17}{20} \times 10^{5} 0 \\ \Rightarrow & 17 \times 5 \\ \Rightarrow & 85 \% \end{aligned}$
(ii) $\frac{13}{18}: 18$
=$\frac{13}{18}$
=$\frac{13}{18} \times 100$
=$72.22 \%$
(iii) $93: 80$
=$\frac{93}{88} \times 100$
=$116.25 \%$
SOLUTION 6
(i) $20 \%$
=$\frac{20}{100}$
=$\quad \frac{1}{5}$
=0.2
(ii)
⇒$2.1 .$
=$\quad \frac{2}{100150}$
=$\frac{1}{50}$
= 0.02
(iii)
$3 \frac{1}{4} \%$
=$\frac{7}{4}$
=$\frac{7}{4 \times 100}$
=0.0175
SOLUTION 7
(i) $27 \%$ of 750
=$\frac{27}{100} \times 50$
=$\frac{27}{2}$
=$₹ 13.5$
(ii) $6 \frac{1}{4} \%$ of $25 \mathrm{~kg}$
⇒$\frac{25}{4} \%$ of $25 \mathrm{~kg}$
⇒$\frac{\frac{25}{4}}{100} \times 25$
⇒$\frac{25}{4 \times 100} \times 25$
⇒$\frac{25}{16} \quad$ (or) $1 \frac{9}{16} \mathrm{~kg}$
⇒$1.56 \mathrm{~kg}$
SOLUTION 8
(i)
$\begin{aligned} 300 \mathrm{~g} \text { of } 2 \mathrm{~kg} & \\ 2 \mathrm{~kg}=(2 \times 1000) \mathrm{g} &=2000 \mathrm{~g} \\ \text { Required percentage } &=\left(\frac{300}{2000} \times 100\right) \% \\ &=15 \% \end{aligned}$
(ii) $₹ 7 .50$ of 26
$₹6=(6 \times 100)$ paise
Required percentage $=\frac{750 \times 100}{600}$
$=125 \%$
SOLUTION 9
(i)
$\begin{aligned} 50 \mathrm{~kg} \text { is } 65 \mathrm{~kg} \text { } \\ \text { Required percentage } &=\frac{65}{50} \times 100 \mathrm{} \\ &=130 \mathrm{~kg} . \end{aligned}$
(ii) $\begin{aligned} ₹ 9 \text { is } ₹ 4 & \\ \text { Required percentage } &=\frac{4}{9} \times 100 \\ &=\frac{400}{9} . \\ &=44 \frac{4}{9} \% \end{aligned}
SOLUTION 10
(i) $16 \frac{2}{3} \%$ of number is 25
let the required number be $x$ '
According to given condition, $16 \frac{2}{3} \%$ of $x$ is 25
$\therefore \quad \frac{16 \frac{2}{3}}{100} \times x=25$
$\frac{50}{3 \times 100} \times x=25$
x=\frac{3 \times 100 \times 25}{50}$
$x=150$
(ii) let the number be 'x '
Given condition is 13.25\% of $x$ is 159
$\begin{array}{l}x=\frac{159 \times 100}{13.25} \\ x =1200\end{array}$
SOLUTION 11
(i) New number $=\left(1+\frac{30}{100}\right) \times 60$
$\because\left(1+\frac{x}{100}\right)$ -f originel number $]$
=$\left(\frac{100+30}{100}\right) \times 60$
=$\frac{130}{100} \times 60$
=78
(ii)
$\begin{aligned} \text { Naw number } &=\left(1-\frac{x}{100}\right) \text { of original } \\ &=\left(1-\frac{10}{100}\right) \times 750 \\ &=\left(\frac{100-10}{100}\right) \times 750 \\ &=\frac{90}{100} \times 750 \\ &=675 \end{aligned}$
SOLUTION 12
(i) $\quad\left(1+\frac{x}{100}\right)$ of original $=$ New number
$\left(1+\frac{15}{100}\right) \times x=299$
$\frac{115}{100} \times x=299$
$\left(\frac{100+15}{100}\right) \times x=209$
$x=\frac{299 \times 100}{115}$
x =260
(ii) $\left(1-\frac{18}{100}\right) \times x=697$
let number be $x$ 1
$\therefore \quad\left(\frac{100-18}{100}\right) \times x=697$
$\frac{82}{100} \times x=697$
$x=\frac{697 \times 100}{82}$
x=850
SOLUTION 13
(i) let the monthly salary is 'x'
Mr. khana spent 83 % and saved 1870
savings = 100 - 83
= 17 %
17 % of x = 1870
$\begin{aligned} 17 \% \text { of } x &=1870 \\ \frac{17}{100} \times x &=1870 \\ x &=\frac{1870 \times 100}{17} \\ &=110 \times 100 \\ x &=\{11,000\end{aligned}$
∴ monthly salary is rs 11000
SOLUTION 14
let the total strength of school is 'x'
given 38 % of the students are girls
so = 100 - 38
= 62 % is boys
Number of boys $=1023$
i.e. $62 \%$ of $x=1023$
$\frac{62}{100} \times x=1023$
$x=\frac{1023 \times 100}{62}$
=1650
SOLUTION 15
The price of article increased from rs 960 to rs 1080
original price = 960
Increase in price = 1080 - 960
= 120
percentage increase = $\frac{\text { Increase in price }}{\text { onginal value }} \times 100$
$\frac{120}{960} \times 100$
$12.5 \%$
SOLUTION 16
(i) Given , the total no of eligible voters = 1 lakh
= 1,00,000
loser polled = 42%
winner polled = 100- 42
= 58 %
Loser lost by 14400 votes.
$\therefore$ winner- loser $=14,400$
$58 /-42 \%=14,400$
$16 \%=14,400$
let the total noof voter polled
$\begin{aligned} 16 \% \text { of } &=14,400 \\ \frac{16}{100} \times x &=14,400 \\ x &=\frac{14,400 \times 100}{16} \\ x &=90,000 \end{aligned}$
∴ The percentage of voters did not vote
= 1,00,000 - 90,000
= 10,000
i.e 10 %
SOLUTION 17
Given total candidated = 8000
60% were boys
i. e $\frac{60}{100} \times 8000=4800$
girls = 8000 - 4800
= 3200
passed candidates was
$\begin{aligned}80 \% \text { of boys } &=\frac{80}{100} \times 4800 \\90 \% \text { of } \dot{9}+girls &=3840 \\&=\frac{90}{100} \times 3200 \\&=2880 .\end{aligned}$
Total no of candidated passed in exam
i.e 3840 + 2380= 6720
Number of candidates who failed
800 - 6720
= 1280
SOLUTION 18
(i) Given, $\frac{1}{4}$ of students failed in both in
English and maths ie, $25 \%$
$35 \%$ students failed in maths
$30 \%$ students failed in English.
$\begin{aligned} \therefore \text { percentage of students who failod in } \\ \text { only maths } &=35 \%-25 \% \\ &=10 \% \end{aligned}$
$\begin{aligned} \text { percentage of students who failed in } \\ \text { only english } &=30 \% 25 \% \\ &=5 \% \end{aligned}$
$\begin{aligned} \therefore \text { percentate of students who farled in } \\ \text { any of the subjects } &=25+i 0+5 \\ &=40 \% \end{aligned}$
(ii) percentage of students who passed 'in
both the subjects $=100-40$
$=60 \%$
(iii) Given noof students who frailed only in
$\begin{aligned} \text { english }=25 \quad \Rightarrow \quad 5 \%=25 \\ \therefore \text { Total noof students }=100 \% &=\frac{100}{5} \times 25 \\ &=500 \% \end{aligned}$
SOLUTION 19
Let the price of the article be 'x'
The price of article increased by 16%
So $\left(1+\frac{16}{100}\right) \times x=1479$
$\left(\frac{100+16}{100}\right) \times x=1479$
$\frac{116}{100} \times x=1479$
$x=\frac{1479 \times 100}{116}$
$x=1275$
$\therefore$ Original price of article is $\{12751$
SOLUTION 20
Let the prathibha weight is 'x' kg
prathiba weight reduced by 15%
So $\left(1-\frac{15}{100}\right) \times x=59.5$
$\left(\frac{100-15}{100}\right) \times x=59.5$
$\frac{85}{100} \times x=59.5$
$x=\frac{59.5 \times 100}{85}$
$x=70$
SOLUTION 21
(i) As per given condition,
shop reduces all its prices by 15\%
the original price is rs 40
$\therefore$ Let the cost of an article is
$\begin{aligned} x &=40-15 \% \text { of } 40 \\ &=40-\frac{15}{100} \times 40 \\ &=40-6 \\=& 34\end{aligned}$
(ii) Let the orginal price be 'x'.
The article sold at $2.20 .40$
$\therefore x-15 \% o x=20.40$
$x-\frac{15}{100} x x=20.40$
$\frac{100 x-15 x}{100}=20.40$
$\frac{85 x}{100}=20 \% 0$
$x=\frac{20.40}{85} \times 100$
$x=24 .$
Original price of article is $2.24$
SOLUTION 22
The original price is rs 200
increases by 10 %
⇒ $200+10 \%$ of 200
⇒$200+\frac{10}{100} \times 200$
⇒$200+20$
⇒220
decreases by 10 %
⇒ $220-10 \%$ of 220
⇒$220=\frac{10}{104} \times 220$
⇒$220=22$
⇒198
original price is 200
final price is 198
No, the final price is not same as original one .
SOLUTION 23
let 'x' be the number of parrots initially chandini have 20% of the parrots away and 5% of them died
No. of parrots remaining $\begin{aligned} \text { now } &=\left[1-\left(\frac{20}{100}+\frac{5}{100}\right)\right] \times(x) \\ &=0.75 x \end{aligned}$
Now,
45% of the remaining parrots were sold
⇒ 55% of remaining parrots were with chandini
Therefore ,
No of parrots chandini is having finally = $=\left(\frac{55}{100}\right) \times 0.75 x$ -------①
But
given no of parrots chandini is having = 33 -------②
From ①&②
33 is equal to $\left(\frac{55}{100}\right){0.75 x}$
⇒ $33=\left(\frac{55}{100}\right) \times(0.75) \times x$
⇒ x =80
∴ chandini had purchased 80 parrots
SOLUTION 24
Let ''x be the maximum marks
'y' be the minimum pass marks
A candidate gets 36 % in examination and fails by 24 marks
⇒ $(0.36) \times(x)=y-24$ ------①
Another candidate gets 43% in an examination and gets 18 marks more than that of pass marks
⇒ $(0.43) \times(x)=y+18$--------②
⇒ solving equation (1) and (2), we get
=0.36 x+24=0.43 x-18
⇒$\frac{0.7 x}{10}=42$
⇒ x=600 maximum marks
Substituting x = 600 in equation 1
⇒ $(0.3 t) \times 600=y-24$
⇒ y= 240
percentage of pass marks = $\frac{y}{x} \times 100 \%$
⇒ $\frac{240}{600} \times 100$
% of pass marks = 40 %
Exercise 7.2
Question 1
(i) C.P 400 S.P = 468
$\begin{aligned} \text { S.P }>\text { c.p , profit } &=\text { s.p-C.p } \\ &=468-400 \\ &=68 \end{aligned}$
profit percentage = $=\left(\frac{p \text { rofit }}{c \cdot p} \times 100\right) \%$
$=\left(\frac{68}{400} \times 100\right) \%$
$=17 .$
(ii) C.P = 13600 , S.P = 12104
As C.p $>$ S. P $\begin{aligned} \text { Loss } &=c.p-s \cdot p\\ &=13,600-12,10 y \\ &=1496 \end{aligned}$
loss percentage
$\begin{aligned} &=\left(\frac{\text { Loss }}{c . p} \times 100\right) \% \\ &=\left(\frac{1496}{13600} \times 100\right) \% \\ &=11 \% \end{aligned}$
Question 2
Given $S \cdot P=1636.25$, gain $=96.25$
As $Gain=S \cdot p-C p$
⇒ $\begin{aligned} C \cdot P=S \cdot p-G a i n &=1636.25-96.25 \\ &=1540 . \end{aligned}$
⇒ Gain percentage
$\begin{aligned} &=\left(\frac{G a i n}{c \cdot p} \times 100\right) \% \\ &=\left(\frac{96 \cdot 25}{1540} \times 100\right) \% \\ &=6.25 \% \end{aligned}$
Question 3
Given
S.P = 770 LOSS = 110
As loss = c.p - s.p
c.p = loss + s.p
= 110 + 700
⇒ 880
Loss percentage
$\begin{aligned} &=\left(\frac{\text { Loss }}{c . p} \times 100\right) \% \\ &=\left(\frac{110}{880} \times 100\right) \% \\ &=12.5 \% \end{aligned}$
Question 4
c. $p$ of 1 dozen eges $=9.60$
c. $p$ of 25 doten eggs $=(25 \times 9.6)=240$
Total no of eqrs $=25 \times 12=300$ eggs
Out of 300 eqgs, 30 eggs were broken
So the remaining no of eggs were 300 - 30 = 270 eggs
Given
S.P of each egg = Rs 1
S. of 270 eggs $=270 \times 1=270$
As $S \cdot p>c. p$, he always gets profit on given
So the gain percentage = $\left(\frac{gain }{c \cdot p} \times 100\right) \%$
Gain = S.P - C.P
⇒ 270 - 240 = 30
Gain percentage = $\left(\frac{30}{240} \times 100\right) \%$
$=12.5 \%$
Question 5
C.p of an article
$\begin{aligned} &=20,000+1400 \text { (repairs) } \\ &=21,400 \end{aligned}$
profit percentage $=20 \%$
$\frac{\text { profit }}{\text { c.p }} \times 100=20$
Profit $x \times100=20 \times 21,400$
$(s \cdot p-(\cdot p)=20 \times 214$
S. $p-21,400=4280$
$\begin{array}{l}S p=21,400+4280 \\ s p=25680\end{array}$
Selling price of an article = 25,680
Question 6
C.p of bicycles includes
i) 200 bicycles at 1200. pes bicyde $=(200 \times 1200)=240000$
ii) 301- pes birycle on transportation $=200 \times 30=6000$
iii) $40001-$ on advertising $=4000$
Total cost price of bicycles $=2,40,000+6000+4000$
S.p of 200 bicycles $=200 \times 1350$
As $\mathrm{S} \cdot \mathrm{P}>\mathrm{C} \mathrm{p}$, there is always a gain
So $g a i n=s. p-c .p$
$\begin{array}{l}=2,70,000-2,50,000 \\=20,000\end{array}$
$=\frac{Gain}{c . p} \times 100$
$=\frac{20,000}{2,50000} \times 100$
$=8 \%$
Question 7
Let S.P be ₹ x ,
then c.p 90 % of x
$=\frac{9}{10} x$
$\begin{aligned} \text { Profit } &=s \cdot p-c \cdot p \\ &=x-\frac{9 x}{10} \\ &=\frac{x}{10} \end{aligned}$
$\begin{aligned} \text { profit percentage }=&\left(\frac{\text { Profit }}{\text { c. } p} \times 100\right) \% \\ &=\left(\frac{(x / 10)}{(9 \times 10)} \times 100\right) \% \\ &=\frac{100}{9} \% \\ &=11.11 \% \end{aligned}$
Question 8
(i) c.p of 4 note boots $= ₹35$
then c.s of 1 note book $=\frac{35}{4}=8.75$
Sp of 5 note books $=58$
then $s \cdot p$ of 1 notebook $=\frac{58}{5}=11.6 \%$
As. $S \cdot p>C$. $p$, there is always a gain
Gain = s.p - c.p = 11.6 - 8.75
= 2.85
Gain percentage
$\begin{aligned} &=\frac{G a i n}{C \cdot p} \times 100 \\ &=\frac{2.85}{8.25} \times 100 \\ &=32.57 \% \end{aligned}$
(ii) Number of notebooks to be sold = $\frac{\text { total profit }}{\text { profit on one notebooks }}$
$=\frac{171}{2.85}$
=60
Question 9
Cost price of 3 bananas = Rs 1
The c .p of 1 banana = Rs $\frac{1}{3}=0.33$
S.p of 4 bananas = Rs 1
S.p of 4 bananas = Rs 1
Then S.P of 1 banana = Rs $\frac{1}{4}=0.25$
As C.p $>$ s.p, These is always a loss.
$\begin{aligned} \text { Loss } &=C \cdot p-s \cdot p \\ &=\frac{1}{3}-\frac{1}{4} \end{aligned}$
$=\frac{1}{12}$
$\begin{aligned} \text { Loss percentage } &=\frac{\text { Loss }}{c . p} \times 100 \% \\ &=\frac{(1 / 12)}{(1 / 3)} \times 100 \% \\ &=\frac{100}{4} \% \\ &=25 \% \end{aligned}$
Question 10
Given S.P of 5 pens = C.p of 7 pens
let cost price of one pen be x then
C.p of 7 pens = Rs 7x
It is given
S.P of 5 pens = c.p of 7 pens
S.p of 5 pens = rs 7x
S.p of one pen = $\frac{7 x}{5}$
As $S \cdot P>C.$ p $\quad$ there is a profit
$\begin{aligned} \text { profit } &=S\cdot p-c \cdot p \\ &=\frac{7 x}{5}-x=\frac{2 x}{5} \end{aligned}$
∴ $\begin{aligned} \text { Profit percentage } &=\frac{\text { profit }}{C \cdot p} \times 100 \% \\ &=\frac{(2 x / 5)}{x} \times 100 \% \\ &=\frac{200}{5} \% \\ &=40 \% \end{aligned}$
Question 11
i) $C \cdot P=2360$, profit $=8 \%$
As. Profit percentage $=\frac{\text { profit }}{C. p} \times 100$
$\begin{aligned} \text { profit } \times 100 &=8 \times 2360 \\ \text { profit } &=\frac{8 \times 2360}{100} \\ S.P-C \cdot p &=188.8 \\ S \cdot p &=2360+188 \cdot 8 \\ S \cdot P &=2548.8 \end{aligned}$
(ii) $C \cdot P=380 \quad ;$ loss $=7.5 \%$
Loss percentage $=\frac{\text { loss }}{\text { C.P }} \times 100$
Loss $=\frac{7.5 \times 380}{100}$
$\begin{aligned} c\cdot p-s .p &=28.5 \\ s \cdot p &=380-28.5 \\ s \cdot p &=351.5 \end{aligned}$
Question 12
c. $p$ of dozen eqrs $=E 18$
then c.p of 1 egg=$\frac{18}{12}=21.5$
⇒Profit $=50 \%$
$\frac{\text { S. } P-C . P}{C. P} \times 100=50$
$s \cdot p-c \cdot p=9$
$S \cdot p=18+9$
$S \cdot p=27$
S.p of 1 egg =$\frac{27}{12}=22.25$
Question 13
Let the no of wrist watches are x
cost of x wrist watches Rs 60,000
C.P one third of wrist watches will worth 20,000
i) As we know $\frac{1}{3} \mathrm{rd}$ are sold at a 30% profit
$\begin{aligned} S \cdot p &=\left[1+\frac{P}{100}\right] \text { of } C. P \\ &=\left[1+\frac{30}{100}\right] \times 20,000 \\ &=\frac{130}{100} \times 20,000 \\ &=26,000 \end{aligned}$
(ii) $s \cdot p=\left[1+\frac{p}{100}\right]$ of $c.p$ $\left[\because\right.$ As $\frac{1}{3}$ rd are sold
at $20 \%$ gian $]$
$=\left[1+\frac{20}{100}\right] \times 20,000$
$=\frac{120}{100} \times 20,000$
$=24,000$
(iii) $S \cdot P=\left(1-\frac{l}{100}\right)$ of c.p [Remaining are sold at
a $5 \%$. Less $]$
$=\left[1-\frac{5}{100}\right] \times 20,000$
$=\frac{95}{100} \times 20,000$
$=19,000$
Total cost price = ₹ 60,000
$\begin{aligned} \text { Selling price } &=[26,000+24,000+19,000] \\ &=69000 \end{aligned}$
As $S P>C P$ these is always a profit
$\begin{aligned}G a i n=S \cdot p-C \cdot p &=69,000-60,000 \\&=9,000\end{aligned}$
Gain percentage
$=\begin{aligned} &=\frac{G a i n}{c \cdot p} \times 100 \% \\ &=\frac{9,000}{69,000} \times 100 \% \\ &=15 \% \end{aligned}$
Question 14
C.p of a Laptop $= 40,000$
C.P of a mobile phene = 24,000
Total c.p of whole Transaction $=40,000+24,000$
=64,000
As shopkeeper made a profit of $8 \%$ on laptop
$\text { So. } \begin{aligned}s \cdot p &=\left(1+\frac{p}{100}\right) \text { of } c \cdot p \\&=\left[1+\frac{8}{100}\right] \times 40,000 \\&=\frac{108}{100} \times 40,000 =43,200\end{aligned}$
Also, he made a loss of $12 \%$ on mobile phone
$\begin{aligned}S \cdot p &=\left[1-\frac{l}{100}\right] \text { of } C \cdot P \\&=\left[1-\frac{12}{100}\right] \times 24,000 \\&=\frac{88}{100} \times 24,000 \\&=21,120\end{aligned}$
Total S.p on whOle Transaltion $=43,200+21,120$
=64,320 .
As, $S \cdot P>C\cdot p$ there is always a gain
$\begin{aligned}\text { Gain }=S \cdot p-c \cdot p &=64,320-64,000 \\&=320 \\\text { Gain percentage } &=\frac{G a i n}{C i p} \times 100\end{aligned}$
$=0.5 \%$
Question 15
C.p of 40 chairs $=(40 \times 175)=7,000$
Desired gain on whole deal $=10 \%$
s.p of all chairs $=\left[1+\frac{10}{100}\right] \times 7,000$
$=\frac{110}{100} \times 7,000$
$=7,700$
One-Fourt of all articles $=\frac{1}{4} \times 40=10$
C.P of 10 articles $=10 \times 175=1750$
As these articles are sold at a loss of $8 \%$
s.p of these articles $=\left[1-\frac{8}{100}\right]$ of 1750
$=\frac{92}{100} \times 1750$
$=1610$
Selling price of remaining i .e 30 chairs = 7700- 1610 = 6090
∴ S.P of each of the remaining chairs = $\frac{6090}{30}$
=₹203
Question 16
S.P of two electronic gadgets = Rs 44,000 (each)
for first gadget
S.p = rs 44,000 , profit = 10% , C.P = ?
$\begin{aligned} 44,000 &=\left(1+\frac{10}{100}\right) \text { of }(. P) \\ C \cdot P &=Rs\left(44,000 \times \frac{100}{110}\right)=Rs 40,000 \end{aligned}$
For second gadget:
$\begin{aligned} S \cdot p=44,000 &, \text { loss }=12 \%, C \cdot p=9 \\ \text { S. } \rho &=\left[1-\frac{1}{100}\right] \text { of } C \cdot P \\ 44,000 &=\left[1-\frac{12}{100}\right] \text { of } C \cdot P \\ C \cdot P &=\left\{\left[44,000 \times \frac{100}{88}\right]=\{50,000 .\right.\end{aligned}$
Then, Tofal cost price $=40,000+50,000=90,000$
Total selling $\rho_{i}(e=44,000+44,000=88,000$
Loss $=c.p-s \cdot p=90,000-88,000=2,000$
Loss percentage
$\begin{aligned} &=\frac{\text { Loss }}{C.{P}} \times 100 \\ &=\frac{2,000}{99,000} \times 10 \% \\ &=\frac{20}{9} \\ &=2.22 \% \end{aligned}$
Question 17
Manufacturing price of a $T$.V set $=\{12,000$
Shopkeeper Sold to a dealer at a profit of $20 \%$
Now s.p of de T.V $\operatorname{set}=\left[1+\frac{20}{100}\right]$ of $C p$
$\begin{aligned} S \cdot p &=\frac{120}{100} \times 12,000 \\ &=1.4,000 \end{aligned}$
Dealer sold to a customer at $12.5 \%$ profit
Now Dealer's s.p will become cost price
So, New selling price to Customer
$\begin{array}{l}=\left[1+\frac{12.5}{100}\right] \text { of } C P \\ =\frac{112.5}{100} \times 14,000\end{array}$
= 16,200
So the customs bas to pay rs 16200 for T .V SET
Question 18
(i) S. $p=450$, hoss $=10 \%$
$\begin{aligned} \% \text { Loss } &=\frac{\text { Loss }}{c \cdot p} \times 100 \\ 10 &=\left[1-\frac{s \cdot p}{c \cdot p}\right] \times 100 \\ 1-\frac{s \cdot p}{c \cdot p} &=\frac{1}{10} \end{aligned}$
$\frac{S \cdot p}{C .P}=1-\frac{1}{10}=\frac{9}{10}$
$C \cdot p=\frac{450 \times 10}{9}$
$C \cdot P=₹ 500$
(ii) $\begin{aligned} S p=690 &, \text { profit }=15 \% \\ S \cdot p &=\left[1+\frac{p}{100}\right] \text { of }C\cdot p\\ 690 &=\left[1+\frac{15}{100}\right] \times C . p \\ C \cdot \rho &=\frac{690 \times 100}{115} \\ C \cdot &=Rs 600 \end{aligned}$
Question 19
If S.P = 3920 , gain = 12 %
$S \cdot p=\left[1+\frac{p}{100}\right]$ of $c \cdot p$
$3920=\left[1+\frac{12}{100}\right] \times C . p$
$c \cdot p=\frac{3920 \times 100}{112}$
C.P = 3,500
Now S.p= 4375
As s.p $>$ c.p $\quad$ Gain $=S \cdot P-C \cdot P$
$=4,375-3,500$
$=875$
Gain percentage
$\begin{aligned} &=\left[\frac{G a i n}{c \cdot p} \times 100\right] \% \\ &=\left[\frac{875}{3,500} \times 100\right] \% \\ &=25 \% \end{aligned}$
Question 20
$S \cdot P=1334$, Loss $=8 \%$
$S \cdot p=\left[1-\frac{1}{100}\right]$ of $C \cdot p$
$1334=\left[1-\frac{8}{100}\right] \times C . p$
$\begin{aligned} C \cdot p &=\frac{1334 \times 100}{92} \\c\cdot p&= 1450 \end{aligned}$
Given profit $=12 \frac{1}{2} \%=12.5 \%$
Now $S \cdot p=\left[1+\frac{p}{100}\right] \times(c.p)$
$=\left[1+\frac{12.5}{100}\right] \times 1450$
$S \cdot p=\frac{112.5 \times 1450}{100}$
$S \cdot p=21631.25$
Question 21
$\begin{aligned} S \cdot p=252 \cdot & \text { Gain }=5 \% \\ S \cdot P=&\left[1+\frac{P}{100}\right] \times C \cdot \rho \\ C \cdot P &=\frac{s.p \times 100}{100+P} \\ &=\frac{252 \times 100}{100+5} \\ & C \cdot p=\frac{25200}{105}=240 \end{aligned}$
$S \cdot p=? \quad$ if $\quad g a i n=35 \%$
$S \cdot p=\left[1+\frac{p}{100}\right]$ of $c \cdot p$
$=\left[1+\frac{35}{100}\right] \times 240$
$S \cdot 1=\frac{135 \times 240}{100}$
$S \cdot p=2324$
Question 22
Let the selling price of a bag be ₹ x
profit = 12 %
$x=\left(1+\frac{12}{100}\right) d f \cdot p$
$\begin{aligned} x=\frac{112}{100} & \text { of }(\cdot p\\ c \cdot p &=\frac{100 x}{112} \end{aligned}$
To make $18 \%$ profit
$S \cdot p=\left[1+\frac{18}{100}\right] \text { of } c \cdot p$
$=\frac{118}{100} \times \frac{100 x}{112}=\frac{59 x}{56}$
According to given in formation, $\frac{59 x}{56}=x+39$
$\frac{59 x-x}{56}-39$
$\frac{3 x}{56}=3913$
$x=56 \times 13$
$x=728=s.p$
$\begin{aligned} \text { Cost price of } b a g &=\frac{100 \times x}{112} \\ &=\frac{100 \times 728}{112} \\ \text { Cost price of bag } &=₹650 \end{aligned}$
Question 23
Let the S.p of Sweater be $x$, loos $=5 \%$
$\begin{array}{l}x=\left[1-\frac{5}{160}\right] \text { of } c \cdot p \\ \quad C \cdot p=\frac{100 x}{95}\end{array}$
To make $15 \%$ profit
$\begin{aligned} \text { S. } p=\left[1+\frac{15}{100}\right] \text { of } C \cdot p &=\left[1+\frac{15}{100}\right] \times \frac{100 x}{95} \\ &=\frac{115}{100} \times \frac{100 x}{95}=\frac{23 x}{19} \end{aligned}$
According to given information, $\frac{23 x}{19}=x+260$
$\begin{array}{c}\frac{4 x}{19}=260 \\ x=65 \times 19 \\ x=1235\end{array}$
$\therefore$ Selling price of . Sweater $=1,235$
Question 24
Let the selling price be $x$ " Loss $=8 \%$
$\begin{array}{c}x=\left[1-\frac{8}{100}\right] \text { of } c \cdot p \\ c \cdot p=\frac{100 x}{92}\end{array}$
To make a profit of 12 %
$\begin{aligned} S \cdot P=\left[1+\frac{12}{100}\right] \ of c\cdot p&=\left[\frac{112}{100} \times \frac{100 x}{92}\right] \\ &=\frac{28 x}{23} . \end{aligned}$
According to given information, $\frac{28 x}{23}=x+150$
$\frac{5 x}{23}=150^{30}$
Selling price, $x=23 \times 30=₹690$
Exercise 7.3
Question 1
(i)
Marked price $=E 575$, discount $=12 \%$
Discount percentage $=\left(\frac{\text { Discount }}{\text { Marked price }} \times 100\right) \%$
$\begin{array}{l}12=\frac{\text { Discont }}{575} \times 100 \\ \text { Discount }=\frac{12 \times 575}{100}\end{array}$
Discount =₹69
Selling price = Marked price - Discounnt $=575-69$
=₹506
(ii) Printed price $= 12,750$, discount $=8 \frac{1}{3} \%$
Discount percentage $=\left(\frac{\text { Discount }}{\text { Marked price }} \times 100\right) \%$
$\frac{25}{3}=\frac{D \text { discount }}{12,750} \times 100$
Discount $=\frac{25}{3} \times \frac{12,750}{1004}=1062.5$
Selling price $=$ Marked price or printed price - discount
$=12,750-1062.5$
$=11,687.5$
Question 2
(i) Marked price $=\{780$, selling price $=2721.5$
Selling price = Marked price - Discount
Discount $=$ Marked price - selling price
$=780-721.5$
$=58.5$
Discount percentage $=\frac{\text { Discount }}{\text { Marked price }} \times 100 \%$
$=\frac{58.5}{780} \times 100 \%$
$=7.5 \%$
(ii) Advertised price (or)
Marked price $=₹28,500$
selling price $=₹24510$.
Selling price = Marked rice - Discount
$\begin{aligned} \text { Dis count } &=\text { Marked price - selling price } \\ &=28,500-24,510 \\ &=3990 \\ \text { Discount. Percentage } &=\frac{\text { Discount }}{\text { marked price }} \times 100 \end{aligned}$
$=\frac{3990}{28500} \times 100 \%$
$=14 \%$
Question 3
Marked price $=₹ 30$. (each)
Discount \% $=\frac{\text { Discount }}{\text { Marked price }} \times 100$
Discount $=\frac{15 \times 30}{100}=4.5$
Discount on one note book $=4.5$
Discount on dozen note books $=12 \times 4.5=54$
Marked price on doren hote books $=12 \times 30=360$
Selling price $=$ Marked price - Ducount
$=360-54$
$=₹ 306$
Question 4
Selling price = Rs 728 discount = 9 %
$\begin{aligned} s \cdot p &=\left(1-\frac{d}{100}\right) \text { of } M \cdot p \\ 7 28 &=\left(1-\frac{9}{100}\right) \times M \cdot \rho \\ M \cdot P &=\frac{728 \times 100}{91}=₹ 800\end{aligned}$
Question 5
Marked price $=₹ 800 \quad$ Discount $=20 \%$
i) Selling price $=?$
$\begin{aligned} \text { Discount } & \%=\frac{\text { Discant }}{M \cdot \rho} \times 100 \\ &(O R) \\ S \cdot P &=\left[1-\frac{d}{100}\right] \text { of } M \cdot p \\=&\left[1-\frac{20}{100}\right] \times 800 \\ &=\frac{80}{100} \times 800 \\ S \cdot p &=₹640\end{aligned}$
(ii) profit = 25 %
$S \cdot p=\left[1+\frac{p}{100}\right]$ of $(\cdot p)$
$640=\left[1+\frac{25}{100}\right] \times(p)$
$C \cdot p=\frac{640 \times 100}{125}$
C . P= ₹512
Question 6
Marked price $= 2,250 \quad$ Dis cant $=12 \%$ profit $=10 \%$
(i) $\begin{aligned} s \cdot p &=\left[1-\frac{d}{100}\right] \text { of } M \cdot p \\ &=\left[1-\frac{12}{100}\right] \times 2250 \\ &=\frac{88}{100} \times 2250 \end{aligned}$
=₹ 1980
(ii) $S \cdot P=\left[1+\frac{P}{100}\right]$ of $C \cdot p$
$1980=\left[1+\frac{10}{100}\right] \times C .P$
$\begin{aligned} C.p&=\frac{1980 \times 100}{110} \\ &=₹1800 \end{aligned}$
Question 7
Cost price = Rs 650 Discount = 20% profit = 20 %
(i) $\begin{aligned} S \cdot p &=\left[1+\frac{p}{100}\right] \text { of } C \cdot p \\ &=\left[1+\frac{20}{100}\right] \times 650 \\ &=\frac{120}{109} \times 65 \\ S \cdot P &=780 \end{aligned}$
(ii) $S \cdot P=\left[1-\frac{d}{100}\right]$ of $M P$
$780=\left[1-\frac{20}{100}\right] \times M \cdot P$
$M \cdot P=\frac{780 \times 100}{80}$
M. $P=₹975$
Question 8
Cost price = 1200 profit = 80 % Discount = 15%
(i) $\begin{aligned} \text { Marked price } &=1200+(80 \%+(p)\\ &=1200+\left(\frac{80}{100} \times 1200\right) \\ &=1200+960 \\ &=2160\end{aligned}$
$\left[1-\frac{d}{100}\right] \times M \cdot P$
$\left[1-\frac{15}{100}\right] \times 2160$
$\frac{85}{100} \times 2160$
$=1836$
(iii)
$\begin{aligned} \text { profil percentage } &=\left(\frac{S \cdot P-C .P}{c .p} \times 100\right) \% \\ &=\left(\frac{1836-1200}{1200} \times 10\right) \% \\ &=\frac{636}{1200} \times 100 \\ &=53 \% \end{aligned}$
Question 9
Cost price of an article = ₹ 1600
(i) since the cost price is 20 % below the marked price
$C \cdot P=M \cdot p-20 \%$ of $r$
$1600=M \cdot P-\frac{20}{100} \times M \cdot P$
$\begin{aligned} 1600 &=\left[1-\frac{20}{100}\right] \times \mathrm{M} \cdot P \\ M \cdot P &=\frac{1600 \times 100}{80} \\ M \cdot P &= 2000 \end{aligned}$
(ii) Discount $=16 \%$
$\begin{aligned} S \cdot P=&\left[1-\frac{d}{100}\right] \times \mathrm{M} \cdot \mathrm{p} \\=&\left[1-\frac{16}{100}\right] \times 2000 . \\ &=\frac{8 y}{100} \times 2000 \\ S \cdot p &=1680 \end{aligned}$
(iii)
$\begin{aligned} \text { profit percentage } &=\left[\frac{s .p}{C{.p}} \times 100\right] \% \\ &=\left[\frac{1680-1100}{1600} \times 100\right] \% \\ &=\frac{80}{1600} \times 100 \% \\ &=5 \% \end{aligned}$
Question 10
(i)
Discount $=20 \% \quad$,profit =20% ,selling price $= 360$.
$S \cdot p=\left[1-\frac{d}{100}\right]$ of $M \cdot P$
$360=\left[1-\frac{20}{100}\right] \times M \cdot 1$
$M \cdot P=\frac{360 \times 100}{80}$
$M \cdot P=450$
(ii) $s \cdot p=\left[1+\frac{p}{100}\right]$ of $c \cdot p$
$360=\left[1+\frac{20}{1 \cdot 0}\right] \times(\cdot p)$
$C \cdot p=\frac{360 \times 100}{120}$
$C \cdot p=₹ 300$
Question 11
Marked price of a refrigerator $=28,600$.
The selling price of a refrigerator is
$=\left[1-\frac{10}{100}\right]\left[1-\frac{5}{100}\right]$ of $\mathrm{M} \cdot \mathrm{p}$
$=\frac{90}{100} \times \frac{95}{10^{\circ}} \times 28600$
$= 24,453$
Question 12
Let the market price be 'x'
first dealer
$\begin{aligned} \text { S. } P &=\left[1-\frac{15}{100}\right]\left[1-\frac{5}{100}\right] \text { of } \mathrm{M} \cdot \mathrm{P} \\ &=\frac{85}{100} \times \frac{95}{100} \times x \\ &=\frac{17 \times 19 \times x}{20 \times 20}=0.8075 \mathrm{x} \end{aligned}$
Second dealer ;
$\begin{aligned} s \cdot p &=\left[1-\frac{20}{100}\right] \text { of } m \cdot p \\ &=\frac{80}{100} \times x \\ &=\frac{4 x}{5}=0.8 x \end{aligned}$
As the second dealer offer price is less compared to first order
So the second dealer is best offer
Question 13
Let the marked price of an article be' $x^{\prime}$.
and a single discount of $d \%$ be equivalent to
two given successive discounts of $30 \%$ and $10 \%$, then
$\left(1-\frac{d}{100}\right)$ of $\bar{₹} x=\left(1-\frac{36}{100}\right)\left(1-\frac{10}{100}\right) \overline{₹} x$
$1-\frac{d}{100}=\frac{78}{100} \times \frac{90}{100}$
$1-\frac{d}{100}=\frac{63}{100}$
$\frac{d}{100}=\frac{37}{100}$
$d=37$
hence a discount of 37 % is equivalent to two given successsive discount
Exercise 7.4
Question 1
(i) Cost price of a tawel = Rs 50
Sales tax = 5 % of 50 = Rs $\frac{5}{100} \times 50$
= Rs 2.5
$\begin{aligned} \therefore \text { Buying price } &=\text { cost price }+\text { sales Tax } \\ &=50+2.5=\ 52.5 \end{aligned}$
(ii) Cost price of flour = Rs 15 per kg
Then cost price of 5kg flour = 5 x 15 = Rs 75
sales Tax = 5 % of 75 =
$\frac{5}{100} \times 75$
Rs $3.75$
Buying price = cost price + Sales tax
= 75 + 3 .75 = Rs 78 .75
Question 2
(i) Let the original price of $T \cdot V$ be $x$.
$\therefore V A T=8 \%$ of $x=₹\left(\frac{8}{100} \times x\right)= ₹\frac{2 x}{25} .$
Price including $V A I=₹\left(x+\frac{2 x}{25}\right)= \frac{27 x}{25}$
$\begin{aligned} \therefore \frac{27 x}{25} &=13,500 \\ x &=\frac{13,500 \times 25}{27} \\ &=₹12,500 \end{aligned}$
(ii) Now
$\begin{aligned} \frac{27 x}{25} &=180 \\ x &=\frac{180 \times 25}{27} \\ & x=₹166.67 \end{aligned}$
Question 3
let the original pice of $A$ c be $\left\{x^{\circ}\right.$
$\therefore V A T=₹8 \%$ of $x=₹\frac{2 x}{25}$
price including $V A T=₹\left(x+\frac{2 \pi}{25}\right)=₹\frac{27 x}{25}$
$\begin{aligned} \therefore \quad \frac{27 x}{25} &=34,992 \\ x &=\frac{34,992 \times 25}{27} \\ x &= ₹32,400 . \end{aligned}$
Question 4
Price including $V A 1=Rs 1296$
Original price of shirt $=Rs 1200$
Let VAT be ' $x$ "
price including VAT = $x \%$ of original price + original price
$1296=\left(\frac{1}{100} \times 1200+1200\right)$
$12 x=1296-1200$
$12 x=96$
$x=18 \%$
$\therefore \quad V A T=8 \%$
Question 5
Price of purse including $8 \% V A I=523.8$
Let the original price be Rs x
$\therefore$ pripe including $V A T=$ original price $+8 \%$ of orsinal
$523.8=x+8 \% d x$
$523.8=x+\frac{8 x}{100}=x+\frac{2 x}{25}$
$\frac{27 x}{25}=5238$
x=Rs 485
Now VAI increased by $10 \%$
New selling price
$\begin{aligned} &=485+10 \% \text { of } 485 \\ &=485+\frac{10}{100} \times 485 . \\ &=485+48.5 \end{aligned}$
= Rs 533.5
ஃ Now selling price of purse = Rs 533.5
Question 6
Marked price $=\sum 4800$
Rate of discount $=10 \%$
$\text { Dis count }=\frac{10}{100} \times 4,800= 480$
S.P of wall hanging $=$ M.P $-$ Discount
$=4,800-480$
= Rs 4,320
Now VAT $8 \%$ of $4320=₹ \frac{8}{100} \times 4320=345.6$
Bill amount $=4,320+345 \cdot 6=₹ 4665.6$
Hence, the Customer has to pay $4665.6$ in Cash to puschace
Question 7
Let the reduced price of washing machine be Rs x
VAT = 9 % of x = Rs $\left(\frac{9}{100} \times x\right)= \frac{91}{100}$
Amount paid by Amit = x $+\frac{9 x}{100}$ = $\frac{109 x}{100}$
As Amit has 10,900 to purchase it,
$\therefore \frac{1091}{100}=10,900 \Rightarrow x=\frac{10,9 \times \times 100}{109}=10,000$
$\therefore$ The reduced price of washing machine $= 10,000$.
So, amount reduced $=10,900-10,000$
$=2900$.
Hence, the amount reduced by shopkeeper is Rs 900
0 comments:
Post a Comment